A grant from the American Physical Therapy Association supported the development of this clinical practice guideline with development approval from the Academy of Clinical Electrophysiology and Wound Management.

Methodology and outcomes from this clinical practice guideline (CPG) were presented at the 2018 and 2023 Combined Sections Meetings of the APTA.

Recommendation	Action Statement	Evidence	Strength of
		Quality	Recommendation
1	Physical therapists and other healthcare providers	D	Weak
	who prescribe exercise for adults with a diabetic foot		
	ulcer may prescribe interventions to maintain		
	cardiovascular health and muscular fitness while		
	minimizing weight bearing on the foot. In addition, an		
	assistive device may be utilized as needed to improve		
	balance and further reduce weight bearing in an adult		
	with a current diabetic foot ulcer.		
11	Physical therapists and other healthcare providers	D	Weak
	who evaluate physical fitness in adults with diabetes		
	should measure physical fitness, including flexibility,		
	strength, cardiorespiratory fitness, balance, and motor		
	agility (Evidence quality: C; Recommendation strength:		
	weak) AND may measure the level of physical activity		
	such as step count and standing across the continuum		
	of care of an adult with diabetes.		
Illa	Physical therapists and other healthcare providers	А	Strong
	who prescribe exercise should prescribe a progressive		-
	moderate to vigorous intensity exercise program		
	including aerobic and resistance training to adults with		
	diabetes after considering the patient's disease state		
	and limits for exercise AND dependent on the		
	patient's physiologic response to exercise in		
	accordance with the patient's preference and		
	resources.		
IIIb	Physical therapists and other healthcare providers	В	Moderate
	who prescribe exercise may use activity monitor-		
	based counseling to increase physical activity.		
IV	Physical therapists and other healthcare providers	D	Weak
	managing patients with closed diabetic foot ulcers		
	may titrate tissue reloading (e.g. standing, walking) on		
	a newly closed diabetic foot ulcer, maintaining		
	moderate to maximal offloading, especially during the		
	first three months . slowly titrating return to shoe		
	wear using a wear schedule.		
V	All healthcare providers should encourage aerobic	С	Weak
	exercise or physical activity for adults with diabetes	-	
	who are safe to exercise to optimize long-term quality		
	of life as well as reduce health care costs.		

Introduction

Diabetes (DM) continues to cause significant mortality and debility worldwide. In 2019, diabetes was the 7th leading cause of death and a major contributor to the world's leading cause of death, cardiovascular disease. The Centers for Disease Control and Prevention's (CDC) National Diabetes Statistics Report states that 37.3 million Americans have DM and another 96 million people have pre-diabetes.¹

Hyperglycemia, a hallmark of diabetes, puts one at an elevated risk for diabetes-related complications. Included among complications of diabetes are vascular (micro- and macro-) changes as well as changes to the nervous system. Together, these changes increase the risk for plantar ulceration in people with diabetes. As many as 34% of people with diabetes experience plantar ulceration over their lifetimes.² Furthermore, those who have diabetic foot ulcerations that heal are at high risk for re-ulceration. Risk is highest immediately following wound closure with 40% re-ulcerating within 12 months. Over 3 years, nearly 60% of people experience re-ulceration.²

Given the prevalence of DM and the disease's impact on morbidity, healthcare providers must understand and have guidance on the most effective means of preventing and limiting the long-term comorbidities related to DM.^{3,4} In reviewing the major causes of hospitalizations for people with DM, the 2nd most common discharge diagnosis after hospitalization is lower extremity amputation which usually is preceded by a diabetic foot ulcer (DFU).⁵ Although numerous clinical practice guidelines (CPGs) exist for healing a DFU, there are gaps regarding how to best (1) assess physical fitness and mobility in adults with diabetes with or without a DFU; (2) incorporate exercise into the care plan to effectively aid in glycemic control, either in preventing an ulcer or while managing an ulcer; and (3) reload the diabetic foot after ulcer closure to avoid ulcer reoccurrence.^{6–10}

In the 2023 Standards of Care in Diabetes, physical activity recommendations were given as part of the overall diabetes prevention recommendations.³ These recommendations listed physical activity as a component of obesity and weight management for the prevention and treatment of type 2 diabetes, but do not specifically discuss how to incorporate physical activity into a plan of care for an adult with an ulcer or how to return to physical activity after ulcer closure.³ These guidelines also did not discuss assessing overall mobility as an adult with DM ages.⁴ Similarly, other guidelines regarding diabetes care for adults with DFU, at risk for a DFU, or with a history of a DFU, do not sufficiently address or provide tools for the fitness management of patients with DM and skin concerns.^{6–8} What is not known is whether individual studies, reviews, or meta-analyses have tested or evaluated the answer to these important clinical questions, particularly in the context of healing or closed DFUs.

The purpose of this clinical practice guideline was to review and assess previously published guidelines and address gaps within the guidelines specific to the following: best screening tools/tests and interventions to prevent an initial DFU or future re-ulceration, best screening tools and interventions to assess and address mobility impairments, best tools to measure and interventions to address reduced physical fitness and activity, best approach to re-loading the foot after ulceration closure, and finally, whether improvement in physical fitness will positively change quality of life and healthcare costs. The authors believe that management of the DFU itself for healing has been appropriately guided in earlier CPGs.

Methods:

Guideline Development Group

APTA Academy of Clinical Electrophysiology and Wound Management (ACEWM) commissioned the development of an evidence-based CPG to address the paucity of information regarding people with DFU related to areas that physical therapists address. Members of the ACEWM attended the CPG Workshop and began the process of developing a Guideline Development Group (GDG). Initially there were two physical therapists who were Certified Wound Specialists (CWS®) (BA, CA) and another physical therapist in an academic position with a research agenda related to DFU (DW). An additional CWS® physical therapist who had attended the CPG Workshop the previous year (JH) was also included in the initial group. To add breadth to the team, another physical therapist academician with expertise in ankle-foot management was added (MC). Over the course of working on this document, two of the physical therapist members retired (CA, MC), one of whom agreed to continue as a consultant member (MC). After the first member of the GDG retired, a new CWS® physical therapist was added to the group (SS).

Review Team

At the time of the CPG Workshop, a number of stakeholders were identified to serve as members of the external review team. These members were included to add depth and breadth of expertise and included a patient, physician, podiatrist, physical therapist clinicians from other specialization areas as well as those with expertise in the field of DFU care. Some specific members of this group changed due to availability but the general group make-up remained.

Clinical Practice Guideline Review: The ADAPTE Process

Following review of CPGs related to the patient management of DFUs and published up to the year 2015 (See Appendix A), research questions were developed to address gaps in guidance within the existing CPGs. Research questions were determined following review of current practice guidelines. The intent of this clinical practice guideline was to adapt current guidelines to assist in clinical practice decision-making surrounding the management of people with diabetes and foot ulceration that was not presently being addressed by any previously published CPG. The ADAPTE process uses the **A**ppraisal of **G**uidelines for **RE**search & **E**valuation II (AGREE II) tool which is an international tool designed to assess the quality of CPGs. Assessment is performed in 6 domains (Scope and Purpose; Stakeholder Involvement; Rigor of Development; Clarity of Presentation; Applicability; and Editorial Independence) using a seven-point numerical scale where 7 is the highest score.¹¹ When possible, feedback was addressed. Using the AGREE II tool, the National Institute for Health and Care Excellence (NICE)⁸ and Registered Nurses' Association of Ontario (RNAO)⁹ CPGs were determined to sufficiently guide wound management concerns regarding these patients and accepted for the ADAPTE process. In 2017, the following questions were developed to facilitate additional clinical decision-making guidance in areas that were under-addressed.

- 1. In an adult with diabetes, what are the best screenings/tests and measures to prevent initial foot ulceration?
- 2. In an adult with diabetes, what are the best interventions to prevent initial foot ulceration?
- 3. What are the best interventions to reduce the risk of future ulcerations?
- 4. In an adult with diabetes, what are the best test/measures to assess mobility impairments?

- 5. In an adult with a current diabetic foot ulcer, what are the best interventions to address mobility impairments?
- 6. Across the continuum of care of an adult with diabetes, what are the best tests and measures to assess physical fitness and activity?
- 7. Across the continuum of care of an adult with diabetes, what are the best interventions to address reduced physical fitness and activity?
- 8. What are the best methods to progressively load tissue after ulceration closure to prevent recurrence in adults with diabetes?
- 9. In the adult with diabetes, does physical fitness and activity optimize long-term quality of life as well as reduce health care costs?

Literature Search Strategy:

In consultation with a medical librarian at Indiana University Health, search terms and a search strategy were identified to address each of these research questions. The following databases were searched according to the pre-established search terms (Appendix B): PubMed (Medline) and Cumulative Index to Nursing and Allied Health Literature (CINAHL). The search dates were inclusive from "1946 until present" when the searches were undertaken. Articles were restricted to human studies and English language only. References were reviewed for potential additional articles. The searches were initially carried out in January 2018. Over the time required during the first review process for this CPG, updates to other DFU CPGs were published. In 2019, the International Working Group on the Diabetic Foot (IWGDF)⁶ published their CPG update which the GDG reviewed using the AGREE II tool. The GDG determined that questions 1-3, which were specific to prevention of an initial ulcer or re-ulceration, were sufficiently addressed by the updated IWGDF CPG. These questions were then removed from this work as the IWGDF guidance for this area was accepted as put forth within their 2019 guideline (ADAPTE process). After the literature review for question 4 found no research specifically addressing assessment of mobility impairments for adults with DM, the GDG reviewed the Clinical Practice Guideline developed through the Academy of Neurological Physical Therapists to guide outcome measure selection for people with neurologic conditions.¹² The GDG decided to move this CPG into the ADAPTE process and utilized the AGREE II tool. The GDG determined the CPG adequately guided the assessment of mobility impairments for people with DM who often have neurological involvement impacting their function. Thus, question 4 was also removed. The searches were re-run in March / April 2022, and again in February 2023 for the remaining questions 5-9 (Table 1) to locate any additional literature published since the last search. Only data from questions 5-9 will be reported here.

Studies to be included from the literature search were experimental, randomized controlled trials, systematic reviews, meta-analyses, and diagnostic or prognostic retrospective studies. Reviews that were non-systematic, descriptive studies, case reports, and non-scientific papers were excluded. The population was limited to adults with diabetes, but the type of diabetes was not specified (Table 2).

Literature Review and Extraction:

Covidence software (Veritas Health Innovation; <u>www.covidence</u>.org) was utilized for all of the literature reviews. Literature search results were imported into Covidence software where study duplicates were removed. Then, the titles and abstracts were independently reviewed by two reviewers using inclusion and exclusion criteria (Table 2). If the determination of the reviewers was conflicting, the reviewers came to consensus using discussion. If consensus could not be achieved, "maybe" was selected. Both

"yes" and "maybe" studies were moved forward in Covidence for full article review. Full text reviews were completed by two independent reviewers for inclusion or exclusion. If exclusion was chosen, the reason for exclusion was given. Any disagreements between reviewers, including reasons for exclusion, were discussed so that consensus could be achieved. Once an article was included, the studies were reviewed for risk of bias (Quality Appraisal) as well as for extraction of data. Studies were reviewed by two reviewers and consensus on outcome was achieved through discussion. If consensus could not be achieved, a third reviewer, a member of the GDG who served as the question champion, served as the tie-breaker. Data extraction was completed by the person serving as the tie-breaker. The accuracy of extraction was checked by the other reviewers.

Quality Appraisal:

Quality appraisal was completed consistent with the APTA CPG Manual¹³ except that PEDro (Physiotherapy Evidence Database) was used to assess interventional studies, namely randomized controlled trials (RCT).¹⁴ As such, systematic reviews were assessed using A MeaSurement Tool to Assess systematic Reviews (AMSTAR 2),¹⁵ diagnosis studies and cohort studies used a Scottish Intercollegiate Guidelines Network (SIGN) checklist,¹⁶ studies assessing measurement tools used the Consensus-based Standards for the selection of health status Measurement Instruments (COSMIN),¹⁷ and prognosis studies used the Best Bets tool.¹⁸

Article appraisal was undertaken by members of the GDG team. Additional reviewers were trained to use the PEDro appraisal measure. Once training was completed and reviewers were consistent in their reviews, they were assigned interventional studies to review in pairs. All reviews were completed in duplicate such that consensus was achieved as described above.

Each article was given a Level of Evidence and the body of literature reviewed for each question was graded in a manner consistent with the APTA CPG Manual.¹³ A table is included here as a brief summary of the meanings of levels of evidence (Table 3) and the grading of evidence. (Table 4)

Data Analysis and Results:

The original literature search was completed in March 2018 and the repeat search to ensure inclusivity of all studies was completed in March 2022 and again in February 2023. Articles were imported into Covidence software according to each question. Covidence software removed any duplication of literature within each question. Additional studies were removed because they were irrelevant through review of abstract and title. The remaining studies underwent full text review for inclusion. During the review process, IWGDFU published new guidelines that included information answering questions 1-3.⁶ Question 4 was answered by a new published guideline by the Academy of Neurological Physical Therapists.¹² These questions were moved out of the guideline since the ADAPTE model was being used. (Table 5 below and PRISMA Diagrams)

Development of Action Statements:

Action statements were developed using the BridgeWiz (Building Recommendations In a Developer's Guideline Editor) software. This software was developed to aid in the authoring of unambiguous and actionable guidelines.¹⁹ The CPG development team worked through the process as a group following completion of article quality appraisal and extraction. Findings will follow with the action statement recommendations listed first, according to each question.

External Review Process:

The external review process was consistent with that described by the APTA CPG Manual.¹³ The process was designed to facilitate a comprehensive, quality report while mitigating risk for bias or lapses in process. At the outset of the project, stakeholders were identified that included a patient, representatives from medicine, podiatry, physical therapists from other specialization areas, as well as experts in DFU management (defined as people who have published in this area of practice). Additionally, methods experts were consulted. The draft document was sent to a group representing the above stakeholders for review, editing, and open comment. The feedback was taken and incorporated into the draft. The document was externally reviewed by representatives from the Academy of Clinical Electrophysiology and Wound Management (ACEWM), a CPG methodology expert, and association partners. The feedback from this body and any other delayed feedback was addressed and the subsequent document was posted on the ACEWM's website for public comment and review. Invitations for the public comment/review of the document were included in the ACEWM monthly newsletter, eblasts, and social media. Both ACEWM members and non-members were able to review and provide feedback. Suggested feedback and edits were considered and incorporated as appropriate. The document was submitted to the Physical Therapy Journal for editorial review concurrently to the secondary reviews and public feedback process. Comments were addressed.

Action Statements:

Recommendation I: Physical therapists and other healthcare providers who prescribe exercise for adults with a diabetic foot ulcer may prescribe interventions to maintain cardiovascular health and muscular fitness while minimizing weight bearing on the foot. In addition, an assistive device may be utilized as needed to improve balance and further reduce weight bearing in an adult with a current diabetic foot ulcer. (Evidence quality: D, Recommendation Strength: Weak)

Question #5: In a patient with a current diabetic foot ulcer, what are the best interventions to address mobility impairments?

Aggregate Evidence Quality: This is rated as D level or theoretical evidence.(Table 4) Two systematic reviews and one scoping review were included that addressed a broader physical activity on adults with DFU rather than explicitly mobility impairments. The evidence within these reviews was thus described as theoretical.

Benefits: Prescribed exercise may preserve functional capacity, minimize trauma, improve wound healing, and reduce risk of falls.

Risk-Harm Cost: There are potential costs related to the cost of the assistive device, overall wound treatment, and any lost income due to participating in an exercise program.

Benefit-Harm Assessment: Preponderance of Benefit

Value Judgements: The guiding principle behind the question development was to help health care providers optimize the physical fitness and activity of adults with a current diabetic foot ulcer without harming the wound healing process. This is not widely considered a priority in these medically complex adults, but we recommend physical therapists and other healthcare providers who prescribe exercise to consider developing exercise programs for this population as the long-term impact to cardiovascular health and muscular fitness is a significant benefit.

Intentional Vagueness: The developers were intentionally vague about which interventions to utilize due to the lack of evidence supporting specific interventions. There are three systematic reviews (SR) published between 2000-2023 that assessed research of therapeutic exercise for adults with a DFU. All three SR found that there is a need for well-conducted RCTs to guide specifically which interventions are best to improve the cardiovascular health and muscular fitness of these adults without harming the healing response of the DFU.^{20–22} In addition, the developers expect that the clinician will select interventions that address each individual person's needs and goals. See Appendix C for an example for how fitness could be improved or maintained while in the period of offloading.

Role of Patient Preferences: Although the spectrum of exercise intervention is limited due to the need to minimize weight-bearing on the foot, exercise program prescription still should incorporate the adult's preferences to increase adherence and therefore, optimize outcomes.²³

Exclusions: Modifications should be made for any adult with disease conditions where a specific exercise intensity is contraindicated. Further, exercise should be performed only by adults within safe glycemic ranges. Colberg, et al.²⁴ provide detailed guidance on glycemic management with exercise.

Implementation and Audit: Clinicians may consider incorporating exercise prescriptions into their Electronic Medical Record (EMR) as part of the complete patient plan of care. Utilizing scripted phrases or drop-down menu choices may increase implementation and improve standardization to allow for better auditing of outcomes. Finally, an annual audit of clinician inclusion of exercise prescription in the care plan for an adult with a DFU would reinforce implementation.

Research Recommendation: Research is needed to determine the most effective interventions to use while prescribing exercise for the adult population with a diabetic foot ulcer. Although there is broad agreement that adults with diabetes benefit from exercise, there is little guidance on which interventions will provide that benefit while protecting the foot ulcer.

Supporting Evidence and Clinical Interpretation: In 2022, Brousseau et al.²⁰ published a scoping review to determine the impact of physical activity on adults with a DFU. Although they identified nineteen articles from seventeen studies, they were unable to make specific recommendations due to the lack of research, especially RCTs, with strong methodology. They specifically called for high level RCTs focused on physical activity prescription as there is no evidence to guide the components of physical activity. In 2022, Aagaard et al.²¹ made similar recommendations in their systematic review that specifically looked for the impact that exercise has on health-related quality of life compared to the risk of harm that exercise may have on the DFU. Although there were 10 research articles related to exercise for adults with a DFU, none reported the impact on health-related quality of life and the methodology did not allow for reliable conclusions related to exercise and harm. Finally, Wendland et al.'s²² systematic review investigated the evidence of whether to determine if exercise, physical activity, walking step characteristics, or limb loading affects healing outcomes in persons with DFU. Secondarily, they looked

at whether the quantity of exercise, stepping activities, or limb loading affect the length of time to wound closure in persons with DFU. Because of large variation in step activity and group metrics, it was determined that no specific exercise recommendations could be made, although exercise appeared to facilitate more rapid DFU healing. All three of these articles made consistent recommendations for more research on the effect of exercise on wound healing.

Question 6: Across the continuum of care of an adult with diabetes, what are the best tests and measures to assess physical fitness and activity?

Recommendation II: Physical therapists and other healthcare providers who evaluate physical fitness in adults with diabetes should measure physical fitness, including flexibility, strength, cardiorespiratory fitness, balance, and motor agility (Evidence quality: C; Recommendation strength: weak) AND may measure the level of physical activity such as step count and standing across the continuum of care of an adult with diabetes. (Evidence quality: D; Recommendation strength: weak)

Aggregate Evidence Quality: There was a single, level II article assessing the psychometric properties of tests of physical fitness, including physical function.²⁵ This article lacked blinding and had <80% follow-up among the subjects. This is rated as C level or weak evidence.

Measuring the level of physical activity has been suggested by published expert opinion as helpful in increasing physical activity. This is rated as D level or theoretical evidence.²⁶

Benefits: Measuring the physical fitness of a patient may facilitate the identification of a change in fitness that can affect functional ability and diabetes management. Early identification of decreased physical fitness provides a benefit to the patient and provider.

Measuring the physical activity of a patient may facilitate the identification of changes in activity which may indicate progression of the disease, new risk for falls, ulcerations, or functional decline.

Risk, Harm, Cost: No adverse events were reported in the Alfonso-Rosa et al. study.²⁵ When assessing various components of physical fitness, there is a risk that an individual could experience a fall or injury during testing. This risk is mitigated by careful training and the inclusion of safety behaviors learned as a part of physical therapist education.

The cost to the individuals who undergo testing is primarily their time and effort to be tested, including transport to the facilities for testing. If activity monitoring is employed, cost is in the device itself and potential risk for skin issues from the device, depending on the device utilized.

Benefit-Harm Assessment: Preponderance of Benefit

Value Judgments: Monitoring physical fitness in adults with diabetes as they age will positively impact the quality of their health. Utilizing consistent physical fitness testing tools that have been psychometrically tested for a population with type 2 diabetes, particularly those with minimally detectable change values, is helpful to recognize fitness change in this population. We recommend

that standardized protocols be used to support the reliability of these tests across time and individual patient care episodes. (Table 6)

Intentional Vagueness: The recommendation of who should evaluate the physical fitness of this population was intentionally vague to allow for inclusivity of all qualified healthcare providers. The type of fitness testing and activity monitoring within the recommendation was intentionally vague due to limited research to guide more specific recommendations. The studied tests are included in the supporting evidence and in Table 6 to provide some direction for clinicians.

Exclusions: Clinicians should use their clinical judgment when selecting tests and outcome measures. Certain tests should not be performed if contraindicated by the person's disease state. Care should be taken in cases where balance is compromised. Tests should not be performed if contraindicated (e.g., ambulatory test in the presence of a plantar diabetic foot ulcer).

Implementation and Audit: Clinicians and facilities should establish competencies of physical fitness tests, including tests of physical function, before performing them with their patients with diabetes. Please refer to Alfonso-Rosa RM et al.²⁵ for specific tests descriptions. Annual training and practice could help facilitate excellent reliability with the performance of acceptable tests, including the Hand Grip Strength Test, Chair Sit and Reach Test (CSRT), the Timed "Up and Go" (TUG) test, the 6-Minute Walk Test (6MWT), and the 30-Second Sit to Stand (30STS) test. Clinicians may also consider incorporating exercise prescriptions into their EMR as part of the complete patient plan of care. Utilizing scripted phrases or drop-down menu choices may increase implementation and improve standardization to allow for better auditing of outcomes. Finally, an annual audit of clinician utilization of performance testing would reinforce implementation.

Supporting Evidence and Clinical Interpretation:

Selecting outcome measures with established psychometric properties is helpful to determine when actual change has occurred and whether that change is clinically relevant. Some tests which assess physical fitness, including physical function, have been assessed for psychometric properties in people with type 2 diabetes. Included among these tests are the Hand Grip Strength Test, the CSRT, the TUG test, the 6MWT, and the 30STS test.²⁵ High Intraclass Correlation Coefficients (ICC) as a measure of relative reliability using a test-retest design were found for all the tests assessed. Additionally, minimally detectable change (MDC) scores were determined for each of the tests as well. See Table 6 for specific psychometric properties.²⁵

The Hand Grip Strength Test can be used, with excellent relative reliability, to assess upper extremity (UE) strength on both the dominant and non-dominant sides. An MDC was given as 3.85 kg (dominant UE), 4.32 kg (non-dominant UE), and 4.13 kg for bimanual testing. The Hand Grip Strength Test is feasible because it requires commonly available equipment (handheld dynamometer) in clinical settings. The time required to administer the test is less than five minutes, including the minute rest required between measures.²⁵

The CSRT can be useful to test lower extremity (LE) flexibility with excellent reliability for both sides. The MDC was 7.50 cm for the right side and 9.01 cm for the left. This test is clinically feasible since it only requires a ruler and a chair for the individual to sit in. It takes <5 minutes to administer.²⁵

The TUG test can be used to assess motor agility and general mobility (physical fitness and physical function) and has excellent relative reliability and an MDC of 0.85 sec. These values, along with the short testing time (<5 minutes) and minimal required equipment, makes this test clinically feasible.²⁵

The 6MWT can be used to assess the cardiovascular fitness of an individual. In individuals with type 2 diabetes, the test was shown to have excellent relative reliability and has an MDC of 27.37 meters. The 6MWT is feasible to assess cardiovascular fitness. It requires only a stopwatch and a hallway, both consistently available in clinics. This test takes less than 10 minutes to perform.²⁵

The 30STS tests can be used to assess the strength of the LEs. The relative reliability of the test has been shown to be excellent. Furthermore, the MDC was found to be 3.35 repetitions. This test was feasible for its limited requirements, including short timeframe. Additionally, unlike other similar tests, the completion of any repetitions will provide useful information.²⁵

A perspective paper addressing physical training and activity in people with diabetes and peripheral neuropathy suggests that baseline activity levels, from which to increase activity, may be quantified using an activity monitor.²⁶ Additionally, a meta-analysis has shown the use of activity monitors to be helpful in promoting physical activity.²⁷

Related Outcome Measures: There is a difference of opinion on which outcome measure to utilize for assessment. Other outcome measures have been utilized clinically to assess physical fitness such as submaximal and maximal exercise testing (e.g., treadmill tests, cycle tests);^{28–32} strength tests (e.g., 1-repetition max, strength dynamometry);³³ walking tests of various durations (e.g., 10-m shuttle);³⁴ and other sit to stand tests (e.g., 10 time sit to stand or 5 time sit to stand).³⁵ These tests do not have available psychometric properties for a population with type 2 diabetes, including MDC scores. These tests may be more feasible depending on the patient's fitness level (e.g., 2-minute walk test rather than a 6MWT for someone who is deconditioned).

Research Recommendation: Studies are needed to assess the psychometric properties of other physical fitness related outcome measures such as the 5 times sit to stand in a population with diabetes, including both type 1 and type 2 diabetes. Further study on the psychometric properties of the tests included within the study (Hand Grip Strength Test, CSRT, TUG, 6MWT, and 30STS test) should be undertaken to include a population that is more generalizable to the population of interest.

Studies are needed to assess specific activity monitors for their feasibility, reliability, and accuracy for assessing physical fitness and activity in a population with diabetes.

Question 7: Across the continuum of care of an adult with diabetes, what are the best interventions to address reduced physical fitness and activity?

Recommendation Illa: Physical therapists and other healthcare providers who prescribe exercise should prescribe a progressive moderate to vigorous intensity exercise program including aerobic and resistance training to adults with diabetes after considering the patient's disease state and limits for exercise AND dependent on the patient's physiologic response to exercise in accordance with the patient's preference and resources. (Evidence quality: A; Recommendation strength: Strong)

Recommendation IIIb: Physical therapists and other healthcare providers who prescribe exercise may use activity monitor-based counseling to increase physical activity. (Evidence Quality: B; Recommendation strength: Moderate)

Aggregate Evidence Quality: Evidence for Recommendation IIIa included reports from 16 different randomized controlled trials (RCTs)^{28,29,31,33,34,36–48} and three meta-analyses.^{32,49,50} An additional 6 studies were interventional.^{30,51–55} Because of the meta-analyses and RCTs, level I and II evidence predominated. This is rated as A level or strong evidence and risk of bias information can be found in Table 7. Evidence supporting Recommendation IIIb was a single meta-analysis that included 21 studies reporting activity monitor-based counseling in people with type 2 diabetes.²⁷ Because of the lower quality of studies included within this meta-analysis, the evidence quality is rated as B or moderate evidence.

Benefits: The benefit of including exercise, both aerobic and resistance training, to people who have diabetes, is improved cardiorespiratory fitness and strength. Using activity monitor-based counseling may also be effective for increasing physical activity.²⁷

Risk, Harm, Cost: The risks associated with moderate to vigorous intensity exercise, including both aerobic and resistance training, are typical of exercise for everyone and include overuse injury, fatigue, and death. In addition to the typical exercise risks, hypoglycemic episodes also pose a risk for people with diabetes.³ There may also be an increased risk for falls in the presence of peripheral neuropathy.⁵⁶

Benefit-Harm Assessment: Preponderance of Benefit

Value Judgments: The guiding principle behind question development was to help healthcare providers optimize the physical fitness and activity of adults with diabetes. We recommend that physical therapists and other healthcare providers who prescribe exercise consistently develop exercise programs for this population because the long-term impact to cardiovascular health and muscular fitness is a significant benefit.

Intentional Vagueness: The specific type of exercise was intentionally left vague because the best exercise for an individual is the exercise that the individual will complete. The literature support for exercise included various interventions ranging from walking to dancing to yoga to sport to resistance training along with various intensities.^{32,46,49,50,53,55} While not discussed in the included articles, previous studies report that improved self-efficacy and behavioral control likely increase exercise adherence.²³

Role of Patient Preferences: Exercise intervention should incorporate the preferences of adults with diabetes to increase adherence, therefore optimizing outcomes.²³

Exclusions: Modifications should be made for any adult with diabetes with disease conditions where a specific exercise intensity is contraindicated. Furthermore, exercise should be performed only by adults within safe glycemic ranges.³

Implementation and Audit: Clinics and facilities should establish consistent inclusion of exercise prescription with their patients with type 2 diabetes. Annual training could facilitate the incorporation of a variety of exercises within an exercise prescription. Public health approaches to encourage walking or other similar exercises may also be successful.

Inclusion of ticklers within the EMR may promote consistent exercise prescription to facilitate improved physical fitness and activity. Annual audit of follow-through may also serve to promote adoption of consistent exercise prescription among patients with diabetes.

Supporting Evidence and Clinical Interpretation:

Studies have assessed the effects of a variety of different activities including: 1)aerobic activity alone (AT);^{29,31,33,37,39–42} 2)resistance (strength) activity alone (RT);^{29,33,40–42} 3)aerobic activity combined with resistance (strength) training (ATRT);^{40–42} and 4)sport (e.g. soccer, dance) on physical fitness .^{28,30,53} All types of exercise resulted in improvement in physical fitness and activity. Combined exercise patterns improved activity consistent with the approach taken. High intensity interval training was especially helpful compared to continuous walking.^{31,52} See Appendix D for findings. The selection of activity should also be considered in the context of an individual's overall health and ability to tolerate activity.^{4,24} It is important to consider the response to exercise in the presence of diabetes when prescribing and supervising exercise.^{3,4,24} Exercise and sport are not the only way to promote fitness and physical activity. A meta-analysis assessed the effect of activity monitor-based counseling in people with type 2 diabetes on physical activity compared to a control. With 8 pooled studies, an activity monitor-based counseling intervention was favored for increasing step count (physical activity) compared to a control without the intervention.²⁷

Consideration for musculoskeletal-related comorbidities is important because orthopedic comorbidities and complications can affect response to loading and exercise. Thus, it is advisable to gradually increase the intensity of training. The American College of Sports Medicine could be used as a guide for the appropriate progression of exercise.⁵⁷

Research Recommendation: Studies are needed to assess what are the best interventions to address physical fitness and activity in people with type 1 diabetes. Further investigation may be helpful to develop guidelines for intensity and timing of exercise to best address physical fitness and activity in all adults with DM.

Question 8: What are the best methods to progressively load tissue after ulceration closure to prevent recurrence in adults with diabetes?

Recommendation IV: Physical therapists and other healthcare providers managing patients with closed diabetic foot ulcers may titrate tissue reloading (e.g. standing, walking) on a newly closed diabetic foot ulcer, maintaining moderate to maximal offloading, **especially during the first three months**, slowly titrating return to shoe wear using a wear schedule. (Evidence quality: D; Recommendation strength: Weak)

Aggregate Evidence Quality: This is rated as D level or theoretical evidence based on expert opinion.

Benefits: Progressively reloading tissue after ulceration closure may reduce an individual's risk of re-ulceration, allow scar tissue to mature, and lower the potential costs of re-ulceration to the larger healthcare system.

Risk, Harm, Cost: The cost of progressively re-loading tissue after ulceration closure includes the physical burden to the individual of remaining offloaded, the cost of appropriate diabetic footwear, the financial burden if the individual is unable to resume work roles, and the financial cost to the larger healthcare system for the prolonged treatment of the individual.

Benefit-Harm Assessment: There is a preponderance of benefit.

Value Judgments: The guiding principle behind the question development was to assist health care providers in protecting the newly closed wound tissue while transitioning the individual into their diabetic shoes, returning to full function, and avoiding re-ulceration.

Intentional Vagueness: The developers were intentionally vague about the exact steps to the transition to reloading as there is a paucity of evidence to support a specific approach.

Role of Patient Preferences: To prevent re-ulceration, reloading may be prioritized over patient preference. As a result, patient education promoting adherence is critical.

Exclusions: Patients who do not ambulate will not require reloading.

Implementation and Audit: Clinicians may consider adding a reloading schedule to their plan of care after closure of the DFU and include scripted phrases or drop-down menu options in the EMR to increase implementation and standardization for better outcomes. Finally, an annual audit of clinician use of a reloading plan would serve to reinforce implementation.

Differences of Opinion: Clinicians may have differences of opinion in the timeline and extent of reloading as well as devices utilized.

Supporting Evidence and Clinical Interpretation: For this question, the supporting evidence included expert opinion but no research studies. There were 3 articles which described the expert recommended process for re-loading the diabetic foot after ulceration closure.^{58–60} The post-closure protection timeline given in each article varied: 3-4 weeks,⁵⁸ 1-3 months,⁵⁹ and no specific timeline.⁶⁰

Research Recommendation: There is a need for observational and prospective studies that assess post-closure loading to prevent re-ulceration and better understand the mechanism of titration of steps and standing with return to function.

Question 9: In the adult diabetic population, does physical fitness and activity optimize long-term quality of life as well as reduce health care costs?

Recommendation V: All healthcare providers should encourage aerobic exercise, strength training, and/ or physical activity for adults with diabetes who are safe to exercise to optimize long-term quality of life as well as reduce health care costs. (Evidence quality: C; Recommendation strength: weak)

Aggregate Evidence Quality: Evidence included five interventional studies and one case control study. Five found that physical fitness and activity optimize long-term quality of life^{61–65} and one demonstrated reduced healthcare costs for adults with diabetes.⁵⁵ Three of these were not randomized^{55,62,65} and none were blinded. Five studies were level II quality,^{55,61,63–65} one was level III.⁶² This is rated as C level or weak evidence.

Benefits: Aerobic exercise or physical activity optimizes long-term quality of life and reduces health care costs.

Risk, Harm, Cost: The risks are similar to any exercise or activity, including both aerobic and resistance training, are typical of exercise for everyone and include overuse injury, fatigue, and death. In addition to the typical exercise risks, hypoglycemic episodes also pose a risk for people with diabetes.³

Benefit-Harm Assessment: There is a preponderance of benefit for aerobic exercise and physical activity for people with diabetes.

Value Judgments: The guiding principle behind the question development was to highlight benefits of engaging in aerobic exercise, strength training, or general physical activity for adults with diabetes. These may positively impact quality of life and reduce costs.

Intentional Vagueness: The recommendation of who should encourage aerobic exercise or physical activity for this population was intentionally vague to allow for inclusivity of all qualified healthcare providers. Additionally, the activity intensity within the recommendation was intentionally vague due to limited research on intensity's impact on quality of life and healthcare costs to guide more specific recommendations.

Role of Patient Preferences: Self-selected activity should be considered as appropriate. Patient preferences were not discussed in the included studies, but self-selection of activity and goals may improve adherence. Previous studies report that higher levels of self-efficacy and behavioral control with exercise improve adherence in those with chronic disease.²³

Exclusions: For exercise safety, exercise modifications should be made for any adult with disease conditions where a specific exercise intensity is contraindicated. Further, exercise should be performed only by adults within safe glycemic ranges. Colberg, et al.²⁴ provide detailed guidance on glycemic management with exercise.

Implementation and Audit: Clinicians may consider incorporating exercise prescriptions into their EMR as part of the complete patient plan of care. Utilizing scripted phrases or drop-down menu choices may increase implementation and improve standardization to allow for better auditing of outcomes. Finally, an annual audit of clinician use of an exercise prescription would serve to reinforce implementation.

Differences of Opinion: None

Supporting Evidence and Clinical Interpretation: Aerobic exercise was predominant in the studies. Three studies utilized aerobic exercise solely,^{55,63,65} two utilized a combination of aerobic exercise and strengthening,^{62,64} and the last was a cross-sectional study which analyzed patients' fitness and Health-Related Quality of Life (HRQOL) prior to two aerobic exercise trials (Table 8).⁶¹ The Abdelbasset et al.⁶³ study looked at the effect of aerobic exercise on quality of life in subjects with diabetes who sustained burns. Although this study focused on subjects with burns, they all had diabetes and therefore this study answered our question.

Research Recommendation: Research is needed that assesses HRQOL and includes cost analysis of healthcare. Additionally, research is needed that assesses the relationship of physical activity and exercise, based on intensity, to HRQOL and health care costs.

Discussion:

The purpose of this clinical practice guideline was to review and assess previously published guidelines and address gaps within the guidelines specific to identifying: screens and interventions to prevent an initial DFU or future re-ulceration, best screening tools and interventions to assess and impact mobility impairments, best tools to measure and interventions to address reduced physical fitness and activity, best approach to re-loading the foot after ulceration closure, and finally, whether improvement in physical fitness will positively change quality of life and healthcare costs. During the process of developing this CPG, some of the questions were answered by updates to a DFU-related CPG⁶ and one question was answered by a CPG addressing mobility assessment in neurologically involved patients.¹² Given that people with diabetes often develop neurological changes (e.g., diabetic peripheral neuropathy), the GDG determined this was an appropriate reference to another clinical practice guideline.

With the GDG's focus on the remaining questions, the resulting importance of this guideline is to provide a review of literature to address how patients should be managed to best recognize and address deficits in fitness and functional mobility. These areas are commonly addressed by physical therapists and explicit guidance may improve consistent inclusion of these components within the standard of care. Beyond addressing fitness and mobility, prevention of initial DFUs as well as recurrent DFUs is also critical.

Exercise improves fitness and physical activity in adults with DM. This can be achieved with a broad range of exercises, especially if the exercise is patient-selected. While much emphasis in previous guidelines is on the effects of exercise on glucose management, blood pressure control, and other physiologic markers, exercise also has a positive impact on fitness, quality of life, and the cost of healthcare.³ For patients to consistently benefit from exercise, healthcare providers should test the cardiovascular health and fitness of adults with diabetes whenever they access the healthcare system, rather than waiting until they present with a severe complication such as a DFU.

Offloading is critical for DFU healing is well-reported. Existing DFU CPGs provide clear direction for the treatment of DFUs until closure.^{6,8,9} The direction of post-closure care including a plan for the reloading process is a critical step toward the reduction of DFU recurrence. Expert opinion provides some direction for the reloading process, but little data-driven evidence exists to clarify the process.

While some evidence is clear, there are several areas that have gaps in the literature and a definite need for focused research. The effects of exercise on the wound healing process and the assessment of methods to reload a newly re-epithelialized ulcer to prevent recurrence are research areas of high priority.

Limitations:

There are several limitations to the development and outcome of this CPG. While the literature search was comprehensive, the search was initiated within one facility (i.e., Indiana University Health) and subsequent searches occurred at a separate facility (i.e., Mercer University). The very nature of library holdings fluctuates. Literature meeting the inclusion criteria could have been missed because of selected search terms, holdings, or timing of the searches. Furthermore, any studies that were not written in the English language were not included. Other studies that may have been appropriate lacked psychometric data and thus full assessment regarding those properties was impossible.

The process of developing this CPG took 8 years. During this time, changes occurred within the GDG team and the APTA CPG Manual was updated. With the update, one of the quality appraisals utilized (the PEDro) was different than that described within the APTA Clinical Practice Process Manual.¹³ Despite these changes, this document still went through appropriate systematic processes.

Plan for Implementation and Process for Guideline Update

A CPG Implementation Team was created to determine needed resources and materials to drive knowledge translation which includes education and integration into PT practice. This group identified activities and products that needed knowledge translation and will evaluate the effectiveness of the CPG in changing practice. To better implement these guidelines, beyond specifically identified strategies for each recommendation, a checklist (appendix E) can be used upon intake for all people with diabetes to facilitate prevention of initial ulceration and reulceration. Included within the checklist are the skin assessment, range of motion, monofilament testing, readiness to change assessment, and diabetes management (diabetes knowledge, control, and footwear). Also, resources to support implementation for electronic medical records (i.e., phrases, triggers) (Appendix F) and knowledge acquisition with journal club article support are available (appendix G).

Preliminary findings of the GDG for this guideline were presented at the APTA Combined Sections Meeting 2023. This CPG will be open access, with the support of APTA and ACEWM. The *Journal of Clinical Electrophysiology and Wound Management* has published the executive summary of this guideline. Awareness of this guideline will be further facilitated using social media highlights, ACEWM newsletters, and digital tools (e.g., a podcast). Additionally, further development of support materials is planned and will appear on the ACEWM website.

Clinical Practice Guidelines should be updated every 5 years following publication according to guideline development best practice. Planned updates will include repeated searches of the literature for new, best available evidence. A similar process will include use of software (e.g., Covidence) to facilitate the process to include or exclude articles (removal of duplicates, assessment by title/abstract, full text review), perform critical appraisal, and extraction. The ACEWM has a plan in place to ensure there will be a team for this process.

Summary:

Physical fitness and activity should be encouraged and measured in the adult with diabetes with and without foot ulceration, ideally using measurement tools with demonstrated psychometric properties (e.g., Hand grip test, CSRT, TUG, 6MWT, and 30STS test). Exercise and physical activity should be prescribed according to the adult with diabetes' physiologic response to exercise, skin integrity, and other comorbidities, while incorporating the patient's preferences and considering their resources. All healthcare providers should encourage aerobic exercise or physical activity in adults with diabetes safe to exercise to optimize long-term quality of life and reduce health care cost. Finally, following the closure of a DFU, tissue may be reloaded, maintaining moderate to maximal offloading, especially during the first three months; slowly titrating return to shoe wear using a wear schedule and appropriate "diabetic" footwear. Further research is necessary to better support specific guidelines for these recommendations, particularly those based on expert opinion.

Author Contributions:

Concept/idea/research design: EA Altenburger, C. Atkins, M. Cornwall, J. Haan, DM Wendland Writing: EA Altenburger, J. Haan, S. Swen, D. Wendland Data Collection: EA Altenburger, C. Atkins, M. Cornwall, J. Haan, S. Swen, DM Wendland Data Analysis: EA Altenburger, C. Atkins, M. Cornwall, J. Haan, S. Swen, DM Wendland

Project Management: EA Altenburger

Fund Procurement: EA Altenburger, C. Atkins, DM Wendland

Provision of facilities/equipment: EA Altenburger, J Haan, DM Wendland

Providing institutional liaisons: EA Altenburger, J Haan, DM Wendland

Consultation (including review of manuscript before submitting): EA Altenburger, C. Atkins, M. Cornwall, J. Haan, S. Swen, DM Wendland

Acknowledgements:

The Indiana University Health Librarian Christine Bockrath provided support for initial literature searches for this project. Secondary search support was provided with support from Mercer University Library services.

The Guideline Development Group appreciates the efforts and assistance provided by the following individuals who participated in the critical appraisal of articles: Capt. Kathleen O'Neill, Janice Loudon, Tarang Kumar Jain, Ruth Ann F. Burns, Mary Jamison, Celeste Rochelle, Amanda Church, Jennifer Miller, Michelle Kunsman, Jonathon Weinhold, Kelly Lloyd, Kim Levenhagen, Michelle Ramirez.

The following individuals, reviewed a draft of the guidelines and provided feedback: Mark Cornwall, Jill Heitzman, Glenn Irion, Richard Kaufman, Harriet Loehne, and Nancy M. Strange.

References

- 1. Centers for Disease Control and Prevention. *National Diabetes Statistics Report Website*. Accessed August 2, 2022. https://www.cdc.gov/diabetes/data/statistics-report/index.html.
- 2. Armstrong DG, Boulton AJM, Bus SA. Diabetic Foot Ulcers and Their Recurrence. Ingelfinger JR, ed. *N Engl J Med*. 2017;376(24):2367-2375. doi:10.1056/NEJMra1615439
- ElSayed NA, Aleppo G, Aroda VR, et al. 5. Facilitating positive health behaviors and well-being to improve health outcomes: standards of care in diabetes—2023. Diabetes Care. 2023;46(Supplement_1):S68-S96. doi:10.2337/dc23-S005
- 4. ElSayed NA, Aleppo G, Aroda VR, et al. 12. Retinopathy, neuropathy, and foot care: *standards of care in diabetes*—2023. Diabetes Care. 2023;46(Supplement_1):S203-S215. doi:10.2337/dc23-S012
- Centers for Disease Control and Prevention. Coexisting conditions and complications in the national diabetes statistics report. Published online September 2022. https://www.cdc.gov/diabetes/data/statistics-report/coexistingconditions-complications.html
- 6. The International Working Group on the Diabetic Foot. IWGDF guidelines on the prevention and management of diabetic foot disease. Published online 2019:194.
- 7. Steed DL, Attinger C, Colaizzi T, et al. Guidelines for the treatment of diabetic ulcers. *Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc*. 2006;14(6):680-692.
- 8. Coppini D. New NICE guidelines on diabetic foot disease prevention and management. *Pract Diabetes*. 2015;32(8):286-286. doi:10.1002/pdi.1974
- 9. Registered Nurses' Association of Ontario. Assessment and management of foot ulcers for people with diabetes (2nd ed.). Published online 2013.
- 10. Crawford P, Fields-Varnado M, Goldberg M, Bonham P, Flemister B, Wound Guidelines Task Force. Guideline for management of wounds in patients with lower-extremity neuropathic disease. Published online 2012.
- 11. Brouwers M, Kho M, Browman G, et al. AGREE II: advancing guideline development, reporting and evaluation in healthcare. *CMAJ*. 2010;182:E839-842.
- 12. Moore J, Potter K, Blankshain K, Kaplan S, O'Dwyer L, Sullivan J. A core set of outcome measures for adults with neurologic conditions undergoing rehabilitation: a clinical practice guideline. *J Neurol Phys Ther*. 2018;42(3):174-220.
- 13. APTA Clinical Practice Guideline Process Manual. Published online 2018.
- 14. Sherrington C, Herbert RD, Maher CG, Moseley AM. PEDro. A database of randomized trials and systematic reviews in physiotherapy. *Man Ther*. 2000;5(4):223-226. doi:10.1054/math.2000.0372
- 15. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ*. Published online September 21, 2017:j4008. doi:10.1136/bmj.j4008
- 16. Society BT. Scottish intercollegiate guidelines network. *Br Guidel Manag Asthma*. Published online 2016:58.
- 17. Mokkink LB, Terwee CB, Patrick DL, et al. COSMIN checklist manual. Amst Univ Med Cent. Published online 2012.

- 18. Mackway-Jones K, Morton R, Carley S, Emergency Department at Manchester Royal Infirmary. Best BETSs worksheets. https://bestbets.org/links/BET-CA-worksheets.php
- 19. Shiffman RN, Michel G, Rosenfeld RM, Davidson C. Building better guidelines with BRIDGE-Wiz: development and evaluation of a software assistant to promote clarity, transparency, and implementability. *J Am Med Inform Assoc*. 2012;19(1):94-101. doi:10.1136/amiajnl-2011-000172
- 20. Brousseau-Foley M, Blanchette V, Trudeau F, Houle J. Physical activity participation in people with an active diabetic foot ulceration: a scoping review. *Can J Diabetes*. 2022;46(3):313-327. doi:10.1016/j.jcjd.2021.07.002
- 21. Aagaard TV, Moeini S, Skou ST, Madsen UR, Brorson S. Benefits and harms of exercise therapy for patients with diabetic foot ulcers: a systematic review. *Int J Low Extrem Wounds*. 2022;21(3):219-233. doi:10.1177/1534734620954066
- 22. Wendland D, Kline P, Simmons L, Sinacore D. The effect of exercise, physical activity, stepping characteristics, and loading on diabetic foot ulcer healing: a systematic review. *Wounds Compend Clin Res Pract*. 2023;35(1):9-17. doi:10.25270/wnds/22007
- 23. Ricke E, Dijkstra A, Bakker EW. Prognostic factors of adherence to home-based exercise therapy in patients with chronic diseases: A systematic review and meta-analysis. *Front Sports Act Living*. 2023;5:1035023. doi:10.3389/fspor.2023.1035023
- 24. Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. *Diabetes Care*. 2016;39(11):2065-2079. doi:10.2337/dc16-1728
- 25. Alfonso-Rosa RM, Del Pozo-Cruz B, Del Pozo-Cruz J, Sanudo B, Rogers ME. Test-retest reliability and minimal detectable change scores for fitness assessment in older adults with type 2 diabetes. *Rehabil Nurs Off J Assoc Rehabil Nurses*. 2014;39(5):260-268. doi:10.1002/rnj.111
- 26. Kluding PM, Bareiss SK, Hastings M, Marcus RL, Sinacore DR, Mueller MJ. Physical training and activity in people with diabetic peripheral neuropathy: paradigm shift. *Phys Ther*. 2017;97(1):31-43. doi:10.2522/ptj.20160124
- 27. Vaes AW, Cheung A, Atakhorrami M, et al. Effect of 'activity monitor-based' counseling on physical activity and health-related outcomes in patients with chronic diseases: a systematic review and meta-analysis. *Ann Med*. 2013;45(5-6):397-412. doi:10.3109/07853890.2013.810891
- 28. de Sousa MV, Fukui R, Krustrup P, et al. Positive effects of football on fitness, lipid profile, and insulin resistance in Brazilian patients with type 2 diabetes. *Scand J Med Sci Sports*. 2014;24 Suppl 1(9111504, cac):57-65. doi:10.1111/sms.12258
- 29. Ng CLW, Goh SY, Malhotra R, Ostbye T, Tai ES. Minimal difference between aerobic and progressive resistance exercise on metabolic profile and fitness in older adults with diabetes mellitus: a randomised trial. *J Physiother*. 2010;56(3):163-170.
- 30. Andersen TR, Schmidt JF, Thomassen M, et al. A preliminary study: effects of football training on glucose control, body composition, and performance in men with type 2 diabetes. *Scand J Med Sci Sports*. 2014;24 Suppl 1(9111504, cac):43-56. doi:10.1111/sms.12259
- Karstoft K, Winding K, Knudsen SH, et al. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. *Diabetes Care*. 2013;36(2):228-236. doi:10.2337/dc12-0658

- 32. Boule NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in Type 2 diabetes mellitus. *Diabetologia*. 2003;46(8):1071-1081.
- 33. Cauza E, Hanusch-Enserer U, Strasser B, et al. The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. *Arch Phys Med Rehabil*. 2005;86(8):1527-1533.
- 34. Engel L, Lindner H. Impact of using a pedometer on time spent walking in older adults with type 2 diabetes. *Diabetes Educ*. 2006;32(1):98-107.
- 35. Vaz MM, Costa GC, Reis JG, Junior WM, Albuquerque de Paula FJ, Abreu DC. Postural control and functional strength in patients with type 2 diabetes mellitus with and without peripheral neuropathy. *Arch Phys Med Rehabil*. 2013;94(12):2465-2470. doi:10.1016/j.apmr.2013.06.007
- 36. Kirk A, Mutrie N, MacIntyre P, Fisher M. Increasing physical activity in people with type 2 diabetes. *Diabetes Care*. 2003;26(4):1186-1192.
- Praet SFE, van Rooij ESJ, Wijtvliet A, et al. Brisk walking compared with an individualised medical fitness programme for patients with type 2 diabetes: a randomised controlled trial. *Diabetologia*. 2008;51(5):736-746. doi:10.1007/s00125-008-0950-y
- 38. Jakicic JM, Jaramillo SA, Balasubramanyam A, et al. Effect of a lifestyle intervention on change in cardiorespiratory fitness in adults with type 2 diabetes: results from the Look AHEAD Study. *Int J Obes 2005*. 2009;33(3):305-316. doi:10.1038/ijo.2008.280
- 39. Johnson ST, Bell GJ, McCargar LJ, Welsh RS, Bell RC. Improved cardiovascular health following a progressive walking and dietary intervention for type 2 diabetes. *Diabetes Obes Metab*. 2009;11(9):836-843. doi:10.1111/j.1463-1326.2009.01050.x
- 40. Reid RD, Tulloch HE, Sigal RJ, et al. Effects of aerobic exercise, resistance exercise or both, on patient-reported health status and well-being in type 2 diabetes mellitus: a randomised trial. *Diabetologia*. 2010;53(4):632-640. doi:10.1007/s00125-009-1631-1
- 41. Johannsen NM, Swift DL, Lavie CJ, Earnest CP, Blair SN, Church TS. Categorical analysis of the impact of aerobic and resistance exercise training, alone and in combination, on cardiorespiratory fitness levels in patients with type 2 diabetes: results from the HART-D study. *Diabetes Care*. 2013;36(10):3305-3312. doi:10.2337/dc12-2194
- 42. Senechal M, Johannsen NM, Swift DL, et al. Association between changes in muscle quality with etraining and changes in cardiorespiratory fitness measures in individuals with type 2 diabetes mellitus: results from the HART-D study. *PloS One*. 2015;10(8):e0135057. doi:10.1371/journal.pone.0135057
- 43. Dominguez-Munoz FJ, Villafaina S, Garcia-Gordillo MA, et al. Effects of 8-week whole-body vibration training on the HbA1c, quality of life, physical fitness, body composition and foot health status in people with T2DM: a double-blinded randomized controlled trial. *Int J Environ Res Public Health*. 2020;17(4). doi:10.3390/ijerph17041317
- 44. Szilagyi B, Kukla A, Makai A, Acs P, Jaromi M. Sports therapy and recreation exercise program in type 2 diabetes: randomized controlled trial, 3-month follow-up. *J Sports Med Phys Fitness*. 2019;59(4):676-685. doi:10.23736/S0022-4707.18.08591-2
- 45. Espeland MA, Rejeski WJ, West DS, et al. Intensive weight loss intervention in older individuals: results from the Action for Health in Diabetes Type 2 diabetes mellitus trial. *J Am Geriatr Soc*. 2013;61(6):912-922. doi:10.1111/jgs.12271

- 46. Winding KM, Munch GW, Iepsen UW, Van Hall G, Pedersen BK, Mortensen SP. The effect on glycaemic control of low-volume high-intensity interval training versus endurance training in individuals with type 2 diabetes. *Diabetes Obes Metab*. 2018;20(5):1131-1139. doi:10.1111/dom.13198
- 47. MacDonald CS, Johansen MY, Nielsen SM, et al. Dose-response effects of exercise on glucose-lowering medications for type 2 diabetes: a secondary analysis of a randomized clinical trial. *Mayo Clin Proc.* 2020;95(3):488-503. doi:10.1016/j.mayocp.2019.09.005
- 48. Duruturk N, Ozkoslu MA. Effect of tele-rehabilitation on glucose control, exercise capacity, physical fitness, muscle strength and psychosocial status in patients with type 2 diabetes: A double blind randomized controlled trial. *Prim Care Diabetes*. 2019;13(6):542-548. doi:10.1016/j.pcd.2019.03.007
- 49. Wibowo RA, Nuramalia R, Nurrahma HA, et al. The effect of yoga on health-related fitness among patients with type 2 diabetes mellitus: a systematic review and meta-analysis. *Int J Environ Res Public Health*. 2022;19(7). doi:10.3390/ijerph19074199
- 50. Nielsen PJ, Hafdahl AR, Conn VS, Lemaster JW, Brown SA. Meta-analysis of the effect of exercise interventions on fitness outcomes among adults with type 1 and type 2 diabetes. *Diabetes Res Clin Pract*. 2006;74(2):111-120.
- 51. Mendes R, Sousa N, Themudo-Barata J, Reis V. Impact of a community-based exercise programme on physical fitness in middle-aged and older patients with type 2 diabetes. *Gac Sanit*. 2016;30(3):215-220. doi:10.1016/j.gaceta.2016.01.007
- 52. Stoa EM, Meling S, Nyhus LK, et al. High-intensity aerobic interval training improves aerobic fitness and HbA1c among persons diagnosed with type 2 diabetes. *Eur J Appl Physiol*. 2017;117(3):455-467. doi:10.1007/s00421-017-3540-1
- 53. Krishnan S, Tokar TN, Boylan MM, et al. Zumba dance improves health in overweight/obese or type 2 diabetic women. *Am J Health Behav*. 2015;39(1):109-120. doi:10.5993/AJHB.39.1.12
- 54. Lehmann R, Kaplan V, Bingisser R, Bloch KE, Spinas GA. Impact of physical activity on cardiovascular risk factors in IDDM. *Diabetes Care*. 1997;20(10):1603-1611.
- 55. Di Loreto C, Fanelli C, Lucidi P, et al. Make your diabetic patients walk: long-term impact of different amounts of physical activity on type 2 diabetes. *Diabetes Care*. 2005;28(6):1295-1302.
- 56. Reeves ND, Orlando G, Brown SJ. Sensory-motor mechanisms increasing falls risk in diabetic peripheral neuropathy. *Medicina (Mex)*. 2021;57(5):457. doi:10.3390/medicina57050457
- 57. Gary Liguori. ACSM's Guidelines for Exercise Testing and Prescription Eleventh Edition. Eleventh Edition. WoltersKluwer; 2022.
- 58. McGuire J. Transitional off-loading: an evidence-based approach to pressure redistribution in the diabetic foot. *Adv Skin Wound Care*. 2010;23(4):175-190. doi:10.1097/01.ASW.0000363528.16125.a7
- 59. Mueller MJ. Mobility advice to help prevent re-ulceration in diabetes. *Diabetes Metab Res Rev.* 2020;36 Suppl 1(dcy, 100883450):e3259. doi:10.1002/dmrr.3259
- 60. Fernando ME, Woelfel SL, Perry D, et al. Dosing activity and return to preulcer function in diabetes-related foot ulcer remission. *J Am Podiatr Med Assoc.* 2021;111(5). doi:10.7547/20-166

- 61. Bennett WL, Ouyang P, Wu AW, Barone BB, Stewart KJ. Fatness and fitness: how do they influence health-related quality of life in type 2 diabetes mellitus?. *Health Qual Life Outcomes*. 2008;6(101153626):110. doi:10.1186/1477-7525-6-110
- 62. Molsted S, Jensen TM, Larsen JS, et al. Changes of physical function and quality of life in patients with type 2 diabetes after exercise training in a municipality or a hospital setting. *J Diabetes Res*. 2022;2022(101605237):5751891. doi:10.1155/2022/5751891
- 63. Abdelbasset WK, Abdelhalim NM. Assessing the effects of 6 weeks of intermittent aerobic exercise on aerobic capacity, muscle fatigability, and quality of life in diabetic burned patients: Randomized control study. *Burns J Int Soc Burn Inj*. 2020;46(5):1193-1200. doi:10.1016/j.burns.2019.12.013
- 64. MacDonald CS, Nielsen SM, Bjørner J, et al. One-year intensive lifestyle intervention and improvements in healthrelated quality of life and mental health in persons with type 2 diabetes: a secondary analysis of the U-TURN randomized controlled trial. *BMJ Open Diabetes Res Care*. 2021;9(1):e001840. doi:10.1136/bmjdrc-2020-001840
- 65. Wiesinger GF, Pleiner J, Quittan M, et al. Health related quality of life in patients with long-standing insulin dependent (type 1) diabetes mellitus: benefits of regular physical training. *Wien Klin Wochenschr*. 2001;113(17-18):670-675.
- 66. Look AHEAD Research Group, Wing RR. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD trial.. *Arch Intern Med*. 2010;170(17):1566-1575. doi:10.1001/archinternmed.2010.334
- 67. Nwankwo MJ, Okoye GC, Victor EA. Effect of twelve weeks supervised aerobic exercise on ulcer healing and changes n selected biochemical profiles of diabetic foot ulcer subjects. *Int J Diabetes Res*. 2014;3(3):41-48.
- 68. Eraydin S, Avsar G. The effect of foot exercises on wound healing in type 2 diabetic patients with a foot ulcer: a randomized control study. *J Wound Ostomy Continence Nurs*. 2018;45(2):123-130.
- 69. Flahr D. The effect of nonweight-bearing exercise and protocol adherence on diabetic foot ulcer healing: a pilot study. *Ostomy Wound Manage*. 2010;56(10):40-50.
- 70. Honda H, Igaki M, Komatsu M, Tanaka S ichiro. Effect of moderate-intensity seated exercise on the management of metabolic outcomes in hypertensive individuals with or without exercise habits. *J Exerc Sci Fit*. 2021;19(1):51-56. doi:10.1016/j.jesf.2020.09.002

Table 1. Questions 5-9 described in PICO terms.

Question	Population	Intervention(s)	Comparator(s)	Outcome(s)
5	Adults with	Various	No change in	Improved mobility in the
	diabetes with	fitness/exercise	exercise or	context of wound healing.
	current foot	routines with various	standard exercise	
	ulceration	intensities including	used as an	
		aerobic and	alternative	
		resistance training	exercise	
6	Adults with	Not applicable	Not applicable	Psychometric properties of
	diabetes			tests and measures
				assessing physical fitness
				and activity
7	Adults with	Various	No change in	Physical fitness (e.g., VO _{2max} ,
	diabetes	fitness/exercise	exercise or	VO _{2peak} , %METS, sit-to-stand
		routines with various	standard exercise	test, 6-minute walk test,
		intensities including	used as an	blood pressure)
		aerobic and	alternative	
		resistance training	exercise	
8	Adults with	Progressive reloading	Lack of	Presence or absence of
	diabetes with	of recently closed	progressive	ulcer recurrence
	closed ulceration	ulceration	reloading of	
			recently closed	
			ulceration	
9	Adults with	Physical fitness and	Lack of physical	Quality of Life Measures;
	diabetes	activity	fitness and	Health care costs
			activity	

Table 2. Abstract Review Guidelines

Exclusion Criteria:
Non-adults or adults without diabetes
 Non-scientific papers: Opinion papers, case reports, case series
Descriptive studies
Non-systematic literature reviews
Non-English
Animal studies
Subjects under 18 years old
Inclusion Criteria, including quality appraisal tool to be used:
Adult population
Experimental studies
RCTsPEDro
Systematic Reviews—AMSTAR 2
Meta-analyses—AMSTAR 2
Retrospective (choice of diagnostic or prognostic)
Diagnostic/Prognostic–SIGN
Terms for exclusion of articles:
Wound care – treatment of ulcer
Pediatric population
Case study
Non-Peer-reviewed

Table 3. Level of Evidence Definitions

Level of Evidence	Definition
1	Evidence that comes from high quality systematic
	reviews, diagnostic studies, prospective, or RCT
Ш	Evidence from lesser-quality diagnostic studies or
	prospective studies or RCT
111	Evidence based on retrospective or case-control
IV	Evidence based on case series studies
V	Expert Opinion

Table 4. Grading of Evidence	(modified from APTA CP	G Manual Tables 7)
------------------------------	------------------------	--------------------

Grading of Evidence	Associated Level of Obligation	Defined
Α	Strong	Recommendation based on high
		certainty for at least a moderate
		benefit/cost (based on level 1 or
		2 evidence predominating)
В	Moderate	Recommendation based on high
		certainty for a slight or
		moderate benefit/cost or
		moderate certainty that
		benefit/cost is moderate (based
		on level 2 evidence
		predominating or one high
		quality RCT).
С	Weak	Recommendation with
		moderate certainty for slight
		benefit/cost or weak certainty
		for moderate benefit/cost
		(based on level 2-5 evidence)
D	Theoretical	Recommendation that is
		supported by basic science (not
		clinical trials) or peer-reviewed,
		published expert opinion
Р	Best Practice	Practice recommendation
		according to practice norms
		where there is a clear benefit.
		Expert opinion.
R	Research	Limited/absent evidence or
		equivocal conclusions on
		present research

Table 5. Question status and literature included.

Question	Initial studies	Excluded	Excluded	Number of	Remaining						
	found	because of	because	studies where	studies						
		duplication	irrelevant	full text							
				review							
				completed							
1	Removed becau	Removed because adequately addressed by the IWGDFU 2019 guideline ⁶									
2	Removed becau	Removed because adequately addressed by the IWGDFU 2019 guideline ⁶									
3	Removed because adequately addressed by the IWGDFU 2019 guideline ⁶										
4	Removed becau	use adequately a	ddressed by the A	Academy of Neuro	ological Physical						
	Therapy Outco	me Measure guid	eline. ¹²								
5	268	18	246	4	3						
6	117	0	85	32	1						
7	71	1	38	32	28						
8	107	5	64	38	0						
9	138	3	116	19	6						

Table 6. Psychometric data to assess fitness, including physical function.²⁵

		Relative Reliability	Parameter of	Parameter of		
Fitness test(s)		Parameter and Score:	Measurement	Measurement		
assessed	Construct Measured	ICC (95% CI)	Error: SEM	Error: MDC	%SEM	%CV
Hand Grip	Upper body muscular	Dominant arm ICC =				
Strength Test	strength	0.98 (.95 to .99)	1.4	3.89 kg	5.2	10.62
Hand Grip	Upper body muscular	Non-dominant arm				
Strength Test	strength	ICC = 0.98 (.96 to .99)	1.56	4.32 kg	6.3	10.52
		Bimanual Grip				
Hand Grip	Upper body muscular	Strength (kg) ICC =				
Strength Test	strength	0.98 (.96 to 1.00)	1.49	4.13 kg	5.8	9.55
Right Chair Sit						
and Reach						
Test (cm)	Lower body flexibility	ICC=.94 (.84 to .98)	2.7	7.5 cm	22	39.22
Left Chair Sit						
and Reach						
Test (cm)	Lower body flexibility	ICC = .93 (.82 to .97)	3.25	9.01 cm	26.4	47.56
Timed "Up						
and Go"						
(TUG) Test	Motor agility/mobility	ICC= .98 (.95 to .99)	0.31	0.85 sec	3.5	6.46
6-Minute						
Walk Test	Cardiorespiratory					
(6MWT)	fitness	ICC=.99 (.96 to 1.0)	9.88	27.37 m	2.5	5.12
30-second sit						
to stand test	Lower body strength	ICC=.92 (.79 to .98)	1.21	3.35 times	9.6	17.6

CV: Coefficient of Variation; CI: Confidence Interval; ICC: intraclass correlation coefficient; MDC: Minimal Detectable Change; SEM: Standard Error of Measurement

Table 7. Risk of bias

Study	Specified Eligibility criteria	Randomization	Concealed allocation	Similarity of groups at baseline	Subject/ Provider blinding	Assessor blinding	At least 1 outcome for >85% of subjects	Intention to treat	Funding source reported
Lehmann R, et al., 1997 ⁵⁴	+	-	-	NA	-		+	+	In kind support from Boehringer-Mannheim Switzerland and Novo-Nordisk Switzerland
Kirk A, et al., 2003 ³⁶	+	+	+	+	-	-	+	-	None reported
Di Loreto C, et al., 2005 ⁵⁵	+	+	-	+	-	-	+	-	None reported
Cauza E, et al., 2005 ³³	+	+	-	-		-	+	-	Jubilaumsfond of the Austrian National Bank (Project no. 8537)
Praet SFE, et al., 2008 ³⁷	+	+	t	+	-	+	+	+	Dutch Healthcare Innovation Foundation research grant from 'OZ-zorgverzekeringen' healthcare insurance company; Dutch Ministry of Health, Welfare and Sports grant; in kind supplies support from A. Menarini Diagnostics Benelux, RSscan International
Jakicic JM, et al., 2009 ³⁸	+	+	-	+	-	+	+	+	NIDDKD; National Heart, Lung, and Blood Institute; CDC grants
Johnson ST, et al., 2009 ³⁹	+	+	-	+	-	-	+	+	Heart and Stroke Foundation of Canada
Reid RD, et al., 2010 ⁴⁰	+	+	+	+	-	+	+	+	DARE trial supported by grants from the Canadian Institutes of Health Research (grant MCT- 44155) and the Canadian

									Diabetes Association (The Lillian Hollefriend Grant); and various other grants to support team members (see p. 639- 640)
The Look Ahead Group, 2010 ⁶⁶	+	+	-	+	-	+	+	+	DHHS through cooperative agreements from NIH; NIDDKD; National Heart, Lung, and Blood Institute; National Institute of Nursing Research; National Center on Minority Health and Health Disparities; Office of Research on Women's Health; CDC; Department of Veterans Affairs; among other facilities and research centers (see p. 1574 of reference)
Ng CLW, et al., 2010 ²⁹	+	+	+	+	-	+	+	+	National Medical Research Council of Singapore (NMRC/0728/2003); In kind support of Abbott Laboratories;
Karstoft K, et al., 2013 ³¹	+	+	-	+	-	+	-	+	Danish Centre for Strategic Research in Type 2 Diabetes (grants 09-067009 and 09- 075724); Danish National Research Foundation (02-512- 55)
Espeland MA, et al., 2013 ⁴⁵	+	+	-	-	-	+	+	+	NIDDKD; National Heart, Lung, and Blood Institute; CDC
Johannsen NM, et al., 2013 ⁴¹	+	+	-	+	-	+	+	+	National Institutes of Health (DK-068298)

Andersen TR, et al., 2014 ³⁰	+	-	-	+	-	-	+	+	FIFA Medical Assessment and Research Center (F-MARC) and Nordea-fonden, Denmark
DeSousa MV, et al., 2014 ²⁸	-	+	-	+	-	-	-	-	Grants from the State of Sao Paulo Research Foundation
Krishnan S, et al., 2015 ⁵³	+	-	-	-	-	-	-	-	None reported
Senechal M, et al., 2015 ⁴²	+	+	-	+	-	+	+	+	NIH Grant DK068298
Mendes R, et al., 2016 ⁵¹	+	-	-	-	-	-	-	-	Portuguese Foundation for Science and Technology (SFRH/BD/47733/2008)
Stoa EM, et al., 2017 ⁵²	+	-	-	+	-	-	+	-	No external funding.
Winding KM, et al., 2018 ⁴⁶	+	+	+	+	-	-	+	-	TryFonden; Danish National Research Foundation (DNRF55); Capitol Region of Denmark, Novo Nordisk Foundation, and Danish Diabetes Academy
Duruturk N, Özköslü MA, 2019 ⁴⁸	+	+	+	+	-/+	+	+	-	Authors report no conflict of interest.
Szilagyi B, et al., 2019 ⁴⁴	+	+	+	+	-	+	-	-	Authors report no conflict of interest.
MacDonald CS, et al., 2020 ⁴⁷	+	+	+	+	-	+	+	+	TryFonden; Danish Council for Strategic Research, grants 09- 067009 and 09-075724; Danish Diabetes Academy grant; In kind support by Bayer A/S

Dominguez-	+	+	+	+	+	+	_	+	Regional Department of
Munoz FJ, et	•	•	•	•	•	•		·	Economy and Infrastructure of
al., 2020 ⁴³									the Government of
									Extremadura and European
									Social Fund (PD16008)

Table 8. Health related quality of life and costs description

Study	Subjects	Type of Exercise	Effects on HRQOL
Wiesinger 2001 ⁶⁵	Type 1 DM, mean age 40 years, treatment and control groups	Aerobic exercise with stationary bike for 1 hour 2 times per week for 2 weeks, 3 times per week remainder of 4 months	Significant improvement in HRQOL in treatment group compared to control group
Bennett 2008 ⁶¹	Type 2 diabetes with mean age 56.9*	VO ₂ peak fitness test used, no treatment intervention	Increased fitness correlated with higher HRQOL
Abdelbasset 2020 ⁶³	Type 2 diabetes and burns, mean age 47.8 treatment group and 46.3 control group	Moderate intensity intermittent aerobic exercise 40 minutes per day 3 times per week for 6 weeks	Significant improvement in Burns Specific Health Scale score in treatment group compared to control group
MacDonald 2021 ⁶⁴	Type 2 DM, mean age 53.6 treatment group with structured exercise and individual meal plans, 56.6 standard of care group	Aerobic exercise and resistance training 240-300 minutes per week	Significant improvement in HRQOL in treatment group compared to control group
Molsted 2022 ⁶²	Type 2 DM, split into groups by municipality or hospital rehabilitation clinic, mean age 69.8 and 62.6 respectively	Aerobic exercise and strength training 1 hour 2 times per week for 12 weeks: interval aerobic exercise on ergometer bikes, circuit training with aerobic and strength training exercises	Positive changes in HRQOL for both exercise groups, more pronounced in municipality group
Study	Subjects	Type of Exercise	Impact on costs
Di Loreto 2005 ⁵⁵	Type 2 diabetes and mean age 62 years	Moderate intensity aerobic exercise	Significant reduction in health care costs with energy expenditure of >10 METS/hour/week

Appendix A: Clinical Practice Guidelines Reviewed
Registered Nursing Association of Ontario (RNAO)
The National Institute for Health and Care Excellence (NICE)
Wound, Ostomy, and Continence Nurses Society[™] (WOCN)
Steed, et al. 2006
International Working Group on the Diabetic Foot (IWGDF)--2019

Appendix B: Search Terms O5:

Database: Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) <1946 to Present> Search Strategy:

- Search Shalegy.
- 1 *Diabetic Foot/
- 2 "Outcome and Process Assessment (Health Care)"/
- 3 "Activities of Daily Living"/
- 4 1 and 3
- 5 limit 4 to (english language and humans)
- 6 "Activities of Daily Living"/ or Mobility Limitation/ or "Quality of Life"/ or Walking/
- 7 1 and 6
- 8 limit 7 to (english language and humans)
- 9 2 and 8
- 10 mobility.m_titl.
- 11 1 and 10
- 12 limit 11 to (english language and humans)
- 13 *Physical Therapy Modalities/
- 14 1 and 13
- 15 limit 14 to (english language and humans)

16 *Diabetic Foot/dh, dt, pc, rt, rh, su, th [Diet Therapy, Drug Therapy, Prevention & Control,

- Radiotherapy, Rehabilitation, Surgery, Therapy]
- 17 mobility.mp.
- 18 16 and 17
- 19 limit 18 to (english language and humans)
- 20 5 or 8 or 12 or 15 or 18

Interface - EBSCOhost Research Databases

Search Screen - Advanced Search

Database - CINAHL Complete

Search Strategy:

1. (MM "Diabetic Foot") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

2. (MM "Diabetic Foot") Search Options: Expanders - Apply related words; Also search within the full text of the articles

Search modes - Boolean/Phrase

3. (MM "Functional Assessment+") OR (MM "Functional Status") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects Search modes - Boolean/Phrase

4. (MM "Functional Assessment+") OR (MM "Functional Status") Search Options: Expanders - Apply related words; Also search within the full text of the articles Search modes - Boolean/Phrase

5. ((MM "Functional Assessment+") OR (MM "Functional Status")) AND (S2 AND S4) Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

6. ((MM "Functional Assessment+") OR (MM "Functional Status")) AND (S2 AND S4) Search Options: Expanders - Apply related words; Also search within the full text of the articles Search modes - Boolean/Phrase

7. (MM "Physical Mobility") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

8. (MM "Physical Mobility") Search Options: Expanders - Apply related words; Also search within the full text of the articles

Search modes - Boolean/Phrase

9. ((MM "Physical Mobility")) AND (S2 AND S8) Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

10. ((MM "Physical Mobility")) AND (S2 AND S8) Search Options: Expanders - Apply related words; Also search within the full text of the articles

Search modes - Boolean/Phrase

11. TI Mobility Search Options: Expanders - Apply related words; Also search within the full text of the articles

Search modes - Boolean/Phrase

12. TI Mobility Search Options: Expanders - Apply related words; Also search within the full text of the articles

Search modes - Boolean/Phrase

13. S2 AND S12 Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

14. S2 AND S12 Search Options: Expanders - Apply related words; Also search within the full text of the articles

Search modes - Boolean/Phrase

15. (MM "Physical Therapy+") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

16. (MM "Physical Therapy+") Search Options: Expanders - Apply related words; Also search within the full text of the articles

Search modes - Boolean/Phrase

17. S2 AND S16 Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

18. S2 AND S16 Search Options: Expanders - Apply related words; Also search within the full text of the articles

Search modes - Boolean/Phrase

19. (MM "Diabetic Foot/DH/DT/PC/RT/RH/SU/TH") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects Search modes - Boolean/Phrase

20. (MM "Diabetic Foot/DH/DT/PC/RT/RH/SU/TH") Search Options: Limiters - English Language Expanders - Apply related words; Also search within the full text of the articles Search modes - Boolean/Phrase
21. Mobility Search Options: Limiters - English Language

Expanders - Apply related words; Also search within the full text of the articles

Search modes - Boolean/Phrase

22. Mobility Search Options: Expanders - Apply related words; Also search within the full text of the articles

Search modes - Boolean/Phrase

23. S20 AND S22 Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

24. S6 OR S10 OR S14 OR S18 OR S23 Search Options: Limiters - English Language; Human Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

25. S6 OR S10 OR S14 OR S18 OR S23 Search Options: Limiters - English Language Expanders - Apply related words; Also search within the full text of the articles Search modes - Boolean/Phrase

Q6:

Database: Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) <1946 to Present>

Search Strategy:

1 *Physical Fitness/

- 2 exp *Diabetes Mellitus/
- 3 1 and 2
- 4 limit 3 to (english language and humans)

5 limit 4 to (clinical trial, all or consensus development conference or consensus development conference, nih or controlled clinical trial or evaluation studies or guideline or meta analysis or multicenter study or practice guideline or pragmatic clinical trial or randomized controlled trial or systematic reviews or validation studies)

Interface - EBSCOhost Research Databases

Search Screen - Advanced Search

Database - CINAHL Complete

Search Strategy:

1. MM "Diabetes Mellitus+" Search Options: Limiters - Published Date; Expanders - Also search for related words (synonyms and plurals); Also search within the full text of the articles; Apply equivalent subjects Search modes - Boolean/Phrase

2. MM "Physical Fitness+" Search Options: Limiters - Published Date; Expanders - Also search for related words (synonyms and plurals); Also search within the full text of the articles; Apply equivalent subjects Search

3. MM "Physical Activity" Search Options: Limiters - Published Date; Expanders - Also search for related words (synonyms and plurals); Also search within the full text of the articles; Apply equivalent subjects Search modes - Boolean/Phrase

4. MM "Exercise+" Search Options: Limiters - Published Date; Expanders - Also search for related words (synonyms and plurals); Also search within the full text of the articles; Apply equivalent subjects Search modes - Boolean/Phrase

5. S2 OR S3 OR S4 Search Options: Limiters - Published Date; English Language; Human Expanders - Also search for related words (synonyms and plurals); Also search within the full text of the articles; Apply equivalent subjects Search modes - Boolean/Phrase

6. continuum of care Search Options: Limiters - Published Date; English Language; Human Expanders - Also search for related words (synonyms and plurals); Also search within the full text of the articles; Apply equivalent subjects Search modes - Boolean/Phrase

7. S1 AND S5 AND S6 Search Options: Limiters - Published Date; English Language; Human Expanders - Also search for related words (synonyms and plurals); Also search within the full text of the articles; Apply equivalent subjects Search modes - Boolean/Phrase

8. (MM "Patient Assessment+") OR (MM "Physical Therapy Assessment") OR (MM "Occupational Therapy Assessment") OR (MM "Outcome Assessment") Search Options: Limiters - Published Date; Expanders - Also search for related words (synonyms and plurals); Also search within the full text of the articles; Apply equivalent subjects

9. (MM "Functional Assessment+") Search Options: Limiters - Published Date; Expanders - Also search for related words (synonyms and plurals); Also search within the full text of the articles; Apply equivalent subjects Search modes - Boolean/Phrase

10. S8 OR S9 Search Options: Limiters - Published Date; English Language; Human Expanders - Also search for related words (synonyms and plurals); Also search within the full text of the articles; Apply equivalent subjects Search modes - Boolean/Phrase

11. S1 AND S5 AND S10 Search Options: Limiters - Published Date; English Language; Human Expanders - Also search for related words (synonyms and plurals); Also search within the full text of the articles; Apply equivalent subjects Search modes - Boolean/Phrase

Q7:

Database: Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) <1946 to Present>

Search Strategy:

1 *Physical Fitness/

2 exp *Diabetes Mellitus/

3 1 and 2 (313)

4 limit 3 to (english language and humans)

5 limit 4 to (clinical trial, all or consensus development conference or consensus development conference, nih or controlled clinical trial or evaluation studies or guideline or meta analysis or multicenter study or practice guideline or pragmatic clinical trial or randomized controlled trial or systematic reviews or validation studies)

6 (intervention or interventions).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]

7 5 and 6

Interface - EBSCOhost Research Databases

Search Screen - Advanced Search

Database - CINAHL Complete

Search Strategy:

1. (MM "Diabetic Foot/DH/DT/RT/RH/SU/TH") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

2. (MM "Diabetic Foot/DH/DT/RT/RH/SU/TH") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects Search modes - Boolean/Phrase

3. (MM "Diabetic Foot/DH/DT/RT/RH/SU/TH") Search Options: Limiters - English Language; Human; Age Groups: All Adult

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

4. (MM "Physical Fitness+") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

5. (MM "Physical Activity") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

6. (MM "Exercise+") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

7. S4 OR S5 OR S6 Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

8. S3 AND S7 Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

Q8:

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations and Daily <1946 to Present> Search Strategy:

Search Strategy:

1 exp *Diabetic Foot/rh, th [Rehabilitation, Therapy] {Including Related Terms}

- 2 PRESSURE/
- 3 1 and 2
- 4 limit 3 to (english language and humans)
- 5 limit 4 to yr="1946 -Current"
- 6 limit 3 to (english language and humans)
- 7 limit 1 to yr="1946 -Current"
- 8 limit 2 to yr="1946 -Current"
- 9 limit 3 to yr="1946 -Current"
- 10 limit 4 to yr="1946 -Current"
- 11 limit 5 to yr="1946 -Current"

Interface - EBSCOhost Research Databases

Search Screen - Advanced Search

Database - CINAHL Complete

Search Strategy:

1. (MM "Diabetic Foot/RH/TH") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

2. (MM "Pressure+") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

3. S1 AND S2 Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent

subjects Search modes - Boolean/Phrase

Q9:

Database:

Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations and Daily <1946 to Present>

1 exp *Diabetes Mellitus/ 2 exp *"Quality of Life"/ 3 1 and 2 4 Time Factors/ 5 3 and 4 6 limit 5 to (english language and humans) 7 physical.hw. 8 limit 7 to (english language and humans) 9 3 and 8 10 limit 9 to yr="1946 -Current" Interface - EBSCOhost Research Databases Search Screen - Advanced Search Database - CINAHL Complete Search Strategy: 1 (MM "Diabetes Mellitus+") Search

1. (MM "Diabetes Mellitus+") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

2. (MM "Quality of Life+") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

3. S1 AND S2 Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

4. (MH "Time Factors") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

5. S3 AND S4 Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

6. (MH "Physical Activity") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

7. (MH "Physical Fitness+") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

8. (MH "Exercise+") Search Options: Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

9. S6 OR S7 OR S8 Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

10. S1 AND S4 AND S9 Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

11. MM exercise+ OR MM physical fitness+ OR MM physical activity Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

12. S1 AND S4 AND S11 Search Options: Limiters - English Language; Human

Expanders - Apply related words; Also search within the full text of the articles; Apply equivalent subjects

Search modes - Boolean/Phrase

Appendix C: Example exercise to improve or maintain fitness during offloading.

Aerobic activity using bicycle ergometer with a progressive increase in exercise intensity. Could use the guidance of the ACSM guidelines.^{57,67}

Further specific exercise targeting maintenance or improvement of joint mobility would also be appropriate (e.g., toe, ankle, if able).^{68,69}

Seated exercises with a progressive increase in exercise intensity. Consider resistance training as part of seated exercises.⁷⁰

Appendix D: Question 7 Findings

Study	Study	Participant Characteristics # Age Inclusion Exclusion				Intervention Charac	teristics	Fitness	Change in	Complications
	Design	#	Age	Inclusion	Exclusion	Exercise	Comparator	Assessment	Fitness	
		Subjects								
Lehman	Pre-Post					Each participated	NA	Physical	VO ₂ max	mild
R, et al.,						in a sports camp		fitness was	increased by	hypoglycemic
1997 ⁵⁴						(1 week) to apply		assessed with	6% and max	episodes
						the knowledge		cycle	work	occurred in
						from a diabetes		ergometry,	increased by	virtually all
						self-management		step test, and	11%; Table	the patients
						program.		resting HR;	2 p. 1606	but frequency
						Instruction was		Also assessed		of severe
						given to exercise		mean time of		hypoglycemic
						at least 3x/week		PA;		episodes
						for 45 min (total				decreased by
						of 135 min/week)				0.14 before
						or if baseline				sport to 0.10
						activity was				per patient
						greater, to simply				during and
						increase activity				after sport.
					Symptomatic	as much as				
					CHD,	possible. They				
					autonomic	encouraged				
					neuropathy,	biking, jogging,				
					and inability	and hiking with				
			33 (22-	Well-	to increase	HR between 50-				
			48)	controlled	the amount	70%VO₂ max a				
		20	years	diabetes	of PA	determined.				
Kirk A et	RCT	70>35	mean	In either	presence of	Exercise	Received a	PA; Peak	Exercise	Not described
al.,		male, 35	age	contemplat	medical	consultation30	leaflet about	exercise on	group:	
2003 ³⁶		female	57±7.9	ion or	conditions	minute 1-on-1	exercise and	motorized	median 个	
			years	preparatio	preventing	session based on	diabetes	TM (peak	of 128 min	
				n stage of	exercise	TTM. Looked at		oxygen	moderate	

				exercise		current activity,	uptake	activity and	
				behavior		benefits, barriers,	calculated)	153 min of	
				change;		and costs of		total	
				not		becoming more		activity;	
				meeting PA		active; suitable		Exercise	
				guidelines		activities; social		group	
				but wanted		support; goal		recorded	
				to be more		setting; and		significant	
				active;		relapse		↑ in total	
				T2DM		prevention. Aim		exercise	
						to accumulate 30		duration	
						min of moderate		and peak	
						PA most days of		gradient;	
						the week. Support		Control	
						phone calls at 1		group had a	
						and 3 months.		\downarrow in peak	
								oxygen	
								uptake	
Boule	Systematic	seven	Mean	At least 8	Not a		maximal	个11.8% in	
NG, et	Review	studies	age	weeks	structured,		exercise test	VO₂max in	
al.,	and Meta-	with a	57±7.9	long;	supervised		(with direct	exercise	
2003 ³²	analysis	total of	years	inclusion of	intervention;		measure or	group and a	
		n=266		VO ₂ max	studies that		validated	ightarrow1% in the	
				obtained	included		estimation of	control	
				during	drug co-		oxygen	group; one	
				maximal	intervention;		consumption	study with	
				exercise	absence of	Mean exercise);	high	
				test (with	randomized	characteristics:		intensity	
				direct	control	3.4 sessions per		exercise had	
				measure or	group; not	week, 49 min per		a large ↑ in	
				validated	T2DM; non-	session for 20		VO ₂ max;	
				estimation	human; not	weeks; intensity		exercise	
				of oxygen	with a	ranged from 50-		intensity	
					maximal	75% of VO_2 max		predicted	

				consumpti	aerobic test				standard	
				on); T2DM	as the fitness				mean	
					test;				difference in	
					,				VO ₂ max.	
DiLoreto						Counseling			Reduction in	
C., et	Post hoc					session of at least			BP in groups	
al.,	analysis of					30 min conducted			11-20; 21-	
200555	a those					by a physician and			30; 31-40;	
	randomize	182				designed to advise			>40;	
	d to a	patients				on PA; follow-up			reduction in	
	counseling	randomi				call at 1 month			HR in groups	
	interventio	zed to				and then by 15			21-30; 31-	
	n	the				min sessions every			40; >40	
		interven				3 months in the			>Full benefit	
		tion; 3				outpatient clinic;			at 21-30	
		didn't				2-year study			(average EE	
		complet							of 27	
		e; 1			patients with				METS/hwk	
		dropped			illnesses that				so	
		out of			could				recommend	
		follow-			decrease life				ed as a	
		up; 2			expectancy			Secondary	target; This	
		died of		T2DM of at	or cause			outcomes	corresponds	
		unrelate		least 2	cardiac, liver,			included BP	to about a	
		d		years; age	or renal			and heart	3-mile daily	
		causes;		>40 years;	failure			rate	walk	
Cauza	RCT	22		All	Presence of	ET Group:	ST Group:		ST group:	
E., et al.,		randomi	ST	participant	rapidly	systematic ET	systematic ST		highly	
200533		zed into	group:	s with a	progressive	performed on a	on 3	VO ₂ peak;	significant	
		a 4-	56.2±1.	fasting	or terminal	cycle ergometer	nonconsecutiv	maximal	changes in	
		month	1 y; ET	glucose	illness, MI,	on 3	e days with 10	strength	the max	
		ST	group:	concentrati	uncontrolled	nonconsecutive	min warmup	dynamometr	strength of	
		program	57.9±1.	on of 126	arrhythmias,	days/week; first 4	on cycle; first 2	y	all muscle	

		; 17 randomi zed into	4 y; all T2DM	mg/dL or greater; met the	3rd degree heart blockage;	weeks, trained 15 min/session, 3x/ week; exercise	weeks with low weight exercises; at		groups and more LBM; Peak VO ₂	
		a 4- month		WHO criteria for	elevated BP (>200/100m	sessions increased by 5 minutes	3rd week, 3 sets per muscle		improved by 8% for ET	
		ET		the	mHG on	every 4 weeks.	per week; one		group and	
		program		diagnosis	therapy),	Total exercise	set with 10-15		1% for ST	
				of T2DM;	nephropathy,	time per week	reps without		group;	
				aged 50-	severe	(excluding	interruption; If		maximum	
				70; no	peripheral or	warmup and	more than 15		workload	
				limits for	autonomic	cooldown, was 90	reps were		improved	
				body	neuropatny,	minutes in the last	successfully		significantly	
				weight of	or diabetic	4 weeks.	given weight		(DY 12%) TOP	
				DIVII	rotinonathy		the weight was		groups:	
							increased so		strength	
					musculoskele		that 10 rens		improveme	
					tal and		could be		nt for ET	
					neurologic		performed: All		group	
					abnormalitie		major muscle		ranged from	
					s; OK to have		groups were		0% to 15%	
					mild		workedUE/LE		for leg	
					peripheral		see p. 1529;		press;	
					neuropathy					
Praet	RCT	92	60±9	People	Presence of	Brisk walking:	Medical fitness	Peak oxygen	HR and BP	
SFE, et		patients	years	with T2DM	(silent)	consisted of three	program: 3	uptake	decreased	
al.,		with		diagnosed	cardiac or	60 min exercise	exercise	capacity was	but were	See Table 2 p.
200837		T2DM		for more	peripheral	sessions; first 3	sessions per	estimated	not	741. Mostly
				than 3	vascular	months	week;	based on	different	musculoskelet
				months	disease,	participants were	endurance	maximum	between	al concerns
				prior to	orthopaedic	supervised by	type exercise	workload	the two	were
				screening;	limitations	certified exercise	consisted of	capacity	groups.	reported.

					and/or	trainers and a PT:	interval type	during	There were	
					diabetic foot	After 3 months.	exercise on a	cvcling	not	
					ulceration.	certified trainers	home trainer.	ergometry.	differences	
						guided and	elliptical	Also resting	in workload	
						supervised the	trainer or	HR and BP	capacities	
						training sessions	rowing	were	between	
						and the PT was	ergometer	assessed.	the groups.	
						consultative.	with an			
						During the	average			
						intervention	intensity of			
						period the	73+2% of max			
						intensity	HR. Training			
						increased and	was tailored to			
						averaged 75+5%	individual			
						of max HR.	performance			
							capacity.			
Jakicic	RCT	Data	58.7±6.		Inadequate	Intensive lifestyle	Control		Improveme	
JM, et		from	8 years		control of	intervention (ILI)	condition is		nt in	
al.,		4376			comorbid	designed to	given diabetes		unadjusted	
2005 ³⁸		overwei		45-74 years	conditions;	achieve and	support and		fitness in ILI	
		ght or		old;	HbA1c >	maintain weight	education.		(22.2±30.4%	
		obese		BMI≥25	11%; Blood	loss through			, N=1687)	
		adults		kg/m2 (≥27	pressure ≥	decreased caloric			versus DSW	
		with		kg/m2 if	160/100	intake and			(6.6±22.5%,	
		T2DM		currently	mmHg;	increased physical			N=1643)	
				taking	Fasting	activity.		Graded TM	(P<0.0001).	
				insulin);	triglycerides			test	Adjusted	
				type 2	≥600 mg/dL;			(preferred	fitness	
				diabetes	presence of			speed with	change in ILI	
				mellitus	factors that			grade	group was	
				determine	may limit			increased by	5.06 greater	
				d by self-	adherence to			1% at 1-min	than the	
				report with	interventions			intervals	fitness	
				verification	or affect			through test	change ofr	

					conduct of			DSE. For	
					the trial (see			each vear of	
					listed in			age, there	
					Table 1 p.			was a	
					612 in			significantly	
					referenced			lower	
					article);			change in	
					Underlying			fitness.	
					diseases			Those	
					likely to limit			without a	
					, life span			CVD history	
					and/or affect			, had a 2.10%	
					the safety of			higher	
					the			change in	
					interventions			fitness than	
					(see Table 1			those with a	
					p. 612)			history of	
								CVD.	
Johnson	RCT			People	history of CV	First phase (weeks		In first 12	
ST, et				with type 2	disease at	1-12), participants		weeks,	
al.,				diabetes;	prescreening;	increased daily		participants	
2009 ³⁹				40-70 years	If higher CV	steps using a		increased	
				old; not on	risk but not	pedometer; Each		walking by	
				insulin;	history	participant set		1562	
				able to	evaluation by	own daily goal		steps/day	
				walk; not	cardiologist	according to		and had	
				enrolled in	before	baseline measure.		significant	
				another	entering	Weeks 1-4		decrease in	
				physical	phase 2; at	participants		body	
				activity	information	attended weekly		weight, BMI,	
				program;	session,	group of		and systolic	
				no GI	participants	supervised		and diastolic	
			56.5±7.	disorders;	were asked	walking session		BP. After	
		N=41	2 years	previous	to walk at	and weeks 5-12	BP and HR	phase 2,	

	attendance	their self-	walking sessions	ELP had	
	and	selected	were held once	significantly	
	completion	normal	weekly but were	lower HR	
	of at least	speed for 15	option. A manual		
	11 regional	min. Anyone	and logbook were		
	diabetes	who	given to help		
	education	exceeded 5.0	facilitate goal		
	course.	km/h were	setting and		
		excluded to	recording		
		avoid	steps/day. At		
		potential for	week 12,		
		run rather	participants were		
		than walk to	randomized to		
		increase	either group		
		speed of gait	targeting walking		
		in second	speed (Enhanced		
		phase of	Lifestyle Program-		
		study.	-ELP) or group		
			targeting total		
			daily steps (Basic		
			Lifestyle Program-		
			-BLP). Weeks 13-		
			16. all were asked		
			to attend 1 weekly		
			session in their		
			assigned program		
			(Included		
			supervised		
			Warking Session).		
			were to attend 2		
			weekly booster		
			sessions Weeks		
			21-24 they were		
			21-24 liley were		

						to attend 1 weekly				
						booster session in				
						their assigned				
						program. (Figure				
						1) FI Pweeks 13-				
						16 they were				
						taught to walk				
						10% faster during				
						a 30-minute walk				
						and incorporate				
						that nace into 30				
						min/day walk 3				
						days/week until				
						the end of the				
						study				
Reid RD	RCT with	218			Excluded if:	6-month evercise	6-month			
ot al	narallel	inactive			1 receiving	intervention at 8	overcise			
2010 ⁴⁰	group	neonle			insulin	community-based	intervention at			
2010	design	with	5/1 2+7		therapy: 2	evercise facilities	8 community-			
	uesign	type 2	1 voars		α	supervised by	based evercise		Posistanco	
		diabatas	I years		times/week	nersonal trainers	facilities		avarcisa lad	
		mollitus			for >20 min	Participants	supervised by		to clinically	
		memitus			nor session	evercised 3x/wook	nersonal		but not	
				Type 2	or doing ST	with training	trainers		statistically	
				liphotos	during the	progrossing in	Darticipants		significant	
				mollitus		progressing in	eversised		improveme	
				(defined by	previous o		exercised		nto in the	
				(defined by	changes in	group oversised	training			
				ADA) IOI at		en TMs and/or	nrogrossing in		SF-SU	
				months	madications	biovelo	progressing in		physical	
				and	during	orgometers	intonsity	55.26	component	
				anu		Brogrossion was	Combined	Dr-30	score	
					previous 2	from 15, 20 min		physical	compared	
					months; 4.	from 15-20 min	exercise group	component	with aerobic	
				6.6-9.9%	changes in	per session at 60%	ala full AT plan	score	exercise.	

		antihyperten	max HR to 45 min	plus the full ST		
		sive or lipid-	per session at 75%	plan. Personal		
		lowering	max HR	trainer met		
		agents in the	Resistance group	each		
		provious	nerformed eight	narticinant		
		previous month: E	different eversises	individually at		
		monui, J.	unierent exercises			
		change or ≥	on weight	least 1x/week		
		5% in body	machines each	for 4 weeks,		
		weight	session,	every 2 weeks		
		during the	progressing to 2-3	for next 2		
		previous 2	sets of each	months, then		
		months; 6.	exercise at a	1x/month.		
		serum	weight that could			
		creatinine of	be lifted for a max			
		more than	of 8 reps.			
		200 µmol/l;				
		7. had				
		proteinuria				
		>1 g/24 h; 8.				
		BP >160/95				
		mmHg; 9. PA				
		restricted				
		due to				
		disease: 10.				
		had other				
		medical				
		conditions				
		making				
		narticination				
		inadvisable				
		11				
		completed <				
		12 scheduled				
		exercise				

					sessions					
					during the					
					run-in					
					period.					
The	RCT	5145	mean		Inadequate	Intensive lifestyle	Control			
Look		participa	age		control of	intervention	condition is			
AHEAD		nts were	58±6.8		comorbid	included diet	given diabetes			
Researc		randomi	years		conditions;	modification to	support and			
h		zed,			HbA1c >	achieve and	education.			
Group,		2570 to			11%; Blood	maintain weight			At year 1,	
2010 ⁶⁶		ILI and			pressure ≥	loss through		BP; Max ET at	fitness	
		2575 to			160/100	decreased caloric		baseline and	increased by	
		DSE			mmHg;	intake (designed		a Submax ET	20.4% in ILI	
					Fasting	to induce at least		at years 1	participants	
					triglycerides	a 7% weight loss)		, and 4.	and by 5.0%	
					≥600 mg/dL;	and increased		(Changes in	, in DSE	
					presence of	physical activity		fitness were	participants	
					factors that	(exercise goal was		computed as	between	
					may limit	at least 175		the	baseline and	
				45-74 years	, adherence to	minutes of		difference	vear 1.	
				old;	interventions	physical		between	, Across 4	
				BMI≥25	or affect	activity/week.		estimated	vears. ILI	
				kg/m2 (≥27	conduct of	using activities		metabolic	group had a	
				kg/m2 if	the trial (see	similar in intensity		equivalents	mean	
				currently	listed in	, to brisk walking).		at the point	increased in	
				taking ,	Table 1 p.	57 5 57		that the	fitness	
				insulin):	612 in			participants	(%METS) bv	
				type 2	referenced			achieved or	12.74	
				diabetes	article);			exceeded	whereas the	
				mellitus	Underlying			80% of age-	DSE group	
				determine	diseases			predicted	at an	
				d by self-	likely to limit			max HR or	increase of	
				, report with	life span			RPE of at	1.96 (Table	
				verification	and/or affect			least 16)	1 p. 1568).	

					the safety of					
					, the					
					interventions					
					(see Table 1					
					n. 612)					
Ng CLW	RCT	N= 60			uncontrolled	Progressive ST: in	Aerobic group			
et al	iter	N= 00			DM with	each session 9	in each			
2010 ²⁹					HbA1c >10%	resistive exercises	session 50 min			
2010					avpacted	[soated log pross	of perobic			
					Atroatmont	straight log raisos	oversise 10			
					for always is	straight leg raises,	exercise10			
					for givcernic	himstring curis;	minutes on			
					control or	biceps, triceps,	bicycle and 20			
					dyslipidemia	anterior and	minutes each			
					in next 8	middle deltoids	on			
				50 or older;	weeks; CHF,	with free weights;	TM/elliptical			
				T2DM with	unstable	hip abductors and	[TM, stationary			
				HbA1c	angina, or	extensor with	upright bicycle,			
				between 8-	acute MI	machine] in 3	stationary			
				10% in past	within the	rounds of circuit	recumbent			
				month; for	last year;	with one set of 10	bicycle,			
				≥20 min	proliferative	reps for each	elliptical];			
				and climb	diabetic	exercise per	intensity of 65-		Table 3	
				one flight	retinopathy;	circuit; intensity of	70% HR max.		both RT	
				of stairs	uncontrolled	65-70% 1-RM.	Completed		group and	
				unaided	HTN;	Completed	sessions over 8	Peak oxygen	AT group	
				without	advanced	sessions over 8	weeks.	consumption	with	
			RT	stopping;	arthritis likely	weeks.		(measured	improved	
			group:	sedentary	to limit			during	peak	
			57±7	(never	mobility;			Submax ET	volume of	
			years;	participatin	respiratory			with	oxygen, but	
			AT	g in	co-			modified	control was	
			group:	structured	morbidities:			Bruce	more: BP	
			59±7	exercise/sp	significant			protocol):	√d AT	
			vears	ort)	proteinuria			resting BP	group	

					or CRI; very low caloric diet prescribed or drugs for obesity; RD; inability to monitor BG or comply with exercise					
Karstoft	RCT	32	Control			All received a	All received a			
K, et al.,		people	group:			pedometer to be	pedometer to		IWT	
201331		(control	57.1±3.			worn throughout	be worn		subjects	
		group	0 years;			the study. CWT	throughout the		improved	
		=8;	Continu			Group: had target	study.		their	
		continuo	OUS		Use of	EE rate and were	Control group:		relative	
		US Walking	waiking		exogenous	Instructed to	Instructed to		VO_2 max by	
		waiking	group:		insulin,	perform CVVI	continue their		4.4 ± 1.2	
		group -12:	$00.8\pm2.$		weight instability (>2	above the target.	lifectule for 4		mL/Kg/mm	
		-12, intorval	z years,			target EE rate set	months		anu their	
		walking	walking		months)	for 70% Peak FF	montris.		VO ₂ max by	
		groun	groun.		nhysical	rate and were		Maximal	249 +85	
		=12)	57 5+2		activity (>150	instructed to		oxygen	mI/min No	
		-12)	4 vears		min/week)	nerform IWT		consumption	changes	
			rycurs		and evidence	consisting of		was	were found	
					of liver.	cycles of 3 min of		measured by	in the	
					renal, and	fast walking		indirect	Control or	IWT reduced
					cardiopulmo	(above target) and		calorimetry	CWT	hyperglycemic
					nary disease	3 min of slow		during an	groups. No	episodes
					and diseases	walking (below		incremental	changes	without
					contraindicat	target). All		exhaustive	were found	leading to
					ing physical	training subjects		TM walking	in BP across	hypoglycemic
				T2DM	activity.	were prescribed 5		test. BP	groups.	episodes.

						training sessions				
						per week, 60				
						min/session for 4				
						months.				
Johanns	RCT	N=196		Participant		AT Group:	Non-exercise			
en NM,				s in HART-		participated in TM	Control Group:			
et al.,				D study		walking 3-5	offered weekly			
2013 ⁴¹				with		days/week at	stretching and			
				complete		moderate to	relaxation			
				baseline		vigorous intensity	classes; able to			
				and follow-		~150 min of PA/	maintain their			
			Overall	up data;		week. ; ST group:	normal daily			
			mean	sedentary		3 days/week of ST	physical			
			age:57.1	(aerobic <		[2 sets of 4 UE	activity level			
			±8.1	20 min, <3	Presence or	exercises and 3	(confirmed		The change	
			years;	days/week	medical	sets of 3 LE	with step		in V)2 peak	
			Control	and no RT);	history of	exercises, and 2	counters);		was	
			group	men and	stroke,	sets of abdominal			significantly	
			mean	women 30-	advanced	crunches and back			greater after	
			age:	75 years	neuropathy	extension			ATRT than in	
			58.2±8.	with type 2	or	exercises]; ATST			the control	
			4 years;	diabetes	retinopathy,	Group:			and RT	
			RT	(HbA1c	or other	participated in TM			groups.	
			group:	6.5-11.0%	serious	walking 3-5			Increase in	
			58.3±8.	inclusive)	medical	days/week at			max	
			5 years;	and a BMI	condition	moderate to			estimated	
			AT	≤48.0	contraindicat	vigorous intensity;			METs was	
			group:	kg/m2,	ed for	2 sessions of ST			greater after	
			55.7±7.	fasting	exercise or	each week			both AT and	
			9 years;	triglyceride	that may	comprising one			ATST	
			ATRT	level<500m	prevent	set of 10-12 reps		Exercise	compared	
			group:	g/dL, and	adherence to	for all 9 resistance		testing using	with the	
			56.7±7.	blood	the study	exercise;		a TM to get	control and	
			6 years	pressure	protocol.			VO ₂ peak	RT groups.	

				<160/100						
				mmHg.						
Vaes	Systematic	lotal of		Patients		Variations by	Variations by			
AW, et	review and	2908		with type 2		study of activity	study including			
al.,	Meta-	(Type 2		DM, COPD,		monitor-based	maintenance			
2013 ²⁷	analysis	DM=276		or CHF;		counseling	of normal			
		3;		RCTs with			activity, usual			
		COPD=1		activity			care, and			
		45)		monitor-			encouraged			
				based			increase in			
				counseling			daily steps.			
				interventio						
				n vs. a						
				control						
				interventio						
			Mean	n or usual						
			age	care;						
			reporte	primary						
			d as	outcome of					Intervention	
			47.0 to	objective					favored	
			70.9	physical					greater	
			year in	activity;	Not an RCT				number of	
			group	secondary	assessing				steps	
			with	outcome of	activity				(physical	
			diabetes	generic	monitor-				activity);	
			; 61.2 to	and/or	based				Intervention	
			65.7	disease-	counseling				favored	
			vears in	specific	versus				lowering of	
			, patients	health-	another				svstolic	
			with	related	intervention			Number of	blood	None
			COPD.	outcomes.	or control			steps; BP	pressure	reported.
Anderse	Prospectiv	2212 in		T2DM: no	History or	FG: 1 hour of	Control group	Maximal	In FG. VO ₂	
n TR. et	e	football	49.8+1.	changes in	presence of	supervised	were	cycling	peak after	
,	interventio	group	7 vears	anti-	CV disease or	football training	instructed to	testing to get	12 and 24	

al.,	nquasi-	and 10		diabetic	cancer;	was performed	continue their	at VO ₂ peak,	weeks of	
2014 ³⁰	experimen	in		meds for 3	diabetic	twice a week for	sedentary	time to	training was	
	tal	control		months; no	complication	24 weeks. Training	lifestyle.	exhaustion,	10% and	
		group		history or	s. T1DM.	sessions consisted	,	maximal HR	11% higher	
		0 1-		symptoms	treatment	of small-sided			while it	
				of CV	with B-	games played on a			remained	
				disease or	blockers:	20m wide and			unchanged	
				cancer: no	musculoskele	40m long indoor			in control	
				diabetes	tal	court surrounded			group.	
				complicatio	complaints	by walls. Subjects			8.00p.	
				ns	that could	played 5x10 min				
				Inenhronat	interfere	games mixed with				
				hv	with football	2 min nassive rest				
				retinonath	With football					
				v						
				y, neuronathy						
				1						
DeSousa	RCT	44	Age	,		Football and	Dietary Group:			
MV et	-	(Football	range			Dietary Group:	individually			
al		and diet	48-68			Football training	calculated to			
2014 ²⁸		group =	vears			intervention:	provide a			
		22: Diet				program ran 3x/	' reduction of			
		group =				week for 12	500-1000 kcal			
		22)				weeks. Football	in energy			
		,			CV disease	sessions consisted	intake per day			
					and	of 3v3 to 7v7	for each of the	VO ₂ max and		
					hyperpara-	friendly games	participants.	max HR		
					thyroidism:	held outdoors on	Diet was	tested before	At 12	
					diabetic foot:	natural grass or	balanced and	and after	weeks. VO ₂	
					started on	indoors on a	rich in fiber	intervention	max	
					insulin:	wooden court on	[45-60% CHO.	with a	increased by	
					unable to	rainy days. Each	15-20%	standardized	10±4% in	
					keep training	session lasted 40	Protein, 20-	protocol on a	the football	
				T2DM	schedule	min including 10	30% fat].	TM.	group.	

						min low-intensity				
						warm-up followed				
						by 2x12 min				
						periods of play				
						interspersed with				
						3 min of passive				
						rest.				
Krishna	Quasi-	41	At			Participants	N/A			
n S, et	experimen	women	baseline			completed a 16-				
al.,	tal	complet	(N=41):			week dance				
2015 ⁵³		ed	, 49±12.1			intervention				
		baseline	vears;			(Zumba®) with				
		testing	Remaini			classes held 3				
		(18 DM	ng 28		Excluded if	times per week (1				
		and 23	age:		taking	hour/class) and it				
		with	50.5±1.		insulin, were	was led by a			The	
		DM); 6	8 years.		regular	certified Zumba®			absolute	
		dropped	•		exercisers	instructor.		Cardiorespira	scores for	
		out			(more than 3	Intensity of		tory	participants	
		within			hours per	workout ramped		endurance	with	
		first			week of	up during weeks		was assessed	diabetes	
		month			moderate to	1-3 including		with the	improved	
		due to		Female	high	instructor walking		Rockport	with all	
		strenuou		volunteers	intensity;	through moves		walking test;	three fitness	6 dropped out
		sness of		18-65 years	history of MI;	before completing		muscular	tests.	within first
		Zumba,		of age with	had a	them.		endurance	Statistical	month due to
		4 more		BMI 25-40	pacemaker;			was assessed	testing was	strenuousness
		dropped		kg/m2;	were			with the	only done	of Zumba, 4
		out in		both	pregnant or			chair stand	with pre- to	more dropped
		second		people	lactating; or			test;	post- for the	out in second
		month		with and	were unable			flexibility was	whole	month due to
		due to		without	to commit to			assessed with	combined	knee, ankle,
		knee,		type 2	the			the sit-and-	group	or joint
		ankle, or		diabetes	intervention.			reach test.	(N=28).	inflammation;

		joint inflamm ation; toward end of 3rd month, 3 more dropped out for personal reasons. Completi ng the study: N=28 overwei ght/obes e women (14 with DM, 14 without DM)								
Senecha	RCT	N=196	Overall	Participant	47 were	AT Group:	Non-exercise	Eversice	Change in	
al			age:57.5	D study	to low	walking 3-5	offered weekly	testing using	quality after	
2015 ⁴²			±8.0	with	exercise	days/week at	stretching and	a TM to get	9 months of	
_			years;	complete	compliance	moderate to	relaxation	VO ₂ peak and	exercise	
			Control	baseline	(<70%) and	vigorous intensity	classes; able to	time to	training was	
			group	and follow-	19 were	~150 min of PA/	maintain their	exhaustion	positively	
			mean	up data;	excluded	week. ; ST group:	normal daily	and	associated	
			age:	sedentary	because they	3 days/week of ST	physical	estimated	with change	
			59.1±8.	(aerobic <	had missing	[2 sets of 4 UE	activity level	METs.	in absolute	

	3 years;	20 min, <3	data for	exercises and 3	(confirmed	and relative	
	RT	days/week	muscle	sets of 3 LE	with step	VO ₂ peak as	
	group:	and no RT);	quality index,	exercises, and 2	counters);	well as time	
	58.3±8.	men and	including	sets of abdominal		to	
	3 years;	women 30-	eight for DXA	crunches and back		exhaustion.	
	AT	75 years	and 11 for	extension		No	
	group:	with type 2	muscle	exercises]; ATST		associations	
	56.0±7.	diabetes	strength.	Group:		were	
	8 years;	(HbA1c		participated in TM		observed	
	ATRT	6.5-11.0%		walking 3-5		with change	
	group:	inclusive)		days/week at		in estimated	
	57.0±7.	and a BMI		moderate to		METs. They	
	8 years	≤48.0		vigorous intensity;		found that	
		kg/m2,		2 sessions of ST		those with	
		fasting		each week		T2DM who	
		triglyceride		comprising one		performed	
		level<500m		set of 10-12 reps		both AT and	
		g/dL, and		for all 9 resistance		ST and had	
		blood		exercise;		greatest	
		pressure				increase in	
		<160/100				muscle	
		mmHg.				quality	
						significantly	
						improved	
						CRF	
						measures	
						(absolute	
						and relative	
						VO2 peak,	
						time to	
						exhaustion,	
						and	
						estimated	
						METs	

								compared	
								to the	
								control	
								group.	
Mendes	Non-	60	62.51	55 – 75		Participants		0	
R. et al	experimen	voluntee	(5.92)	vears:		engaged in			
2016 ⁵¹	tal pre-	rs with	vears	T2DM> one		Diabetes em			
	post	T2DM	yeare	vear:		Movimento ®, a			
	evaluation	(30		HbA1c		community-based			
		women.		<10%:		exercise program.			
		30 men):		pharmacol		Exercises held	Aerobic		
		43		ogical	Drop out:	3x/week on non-	fitness		
		participa		regimen	adherence to	consecutive days	assessed		
		nts were		stable > 3	nrogram	during 9 months	through the		
		included		months.	<65%	This exercise	6MWT	Significant	
		in the		maior	narticination	nrogram was	muscle	improveme	13 adverse
		final		complicatio	in other	nrenared	strength	nt in: 6MWT	events were
		analysis		ns of	supervised	according to	(lower limbs)	(from	recorded
		[Evolusio		diabetes	evercise	international	assessed	660.05+	during the
		n hv:		screened	sessions:	evercise	through the	74 86 to	course of the
		dronout		and	changes in	recommendations	nerformance	74.0010	evercise
		(7).		controlled	diotary	for people with	in 2005	02 / 2.	exercise
		(7), <65%		no limit to	nattern:	T2DM: Exercise	agility/balanc	30.48, 30.05T	symptomatic
		>dharan		gait or	accident	sessions were	aginty/balanc	16 68+ 3 20	bypoglycomia
				balanco:	illness or	conducted in	with the	to 21 /0+	(blood glucose
		diotary		independe	surgery with	groups of 20		2 54 TUG	$\sqrt{2}$
		changes		nt	bospitalizatio	participants	flovibility	5.54, 100 6 15+0 08 to	< 72mg/uL), 4
		(1) by		community	n: pathology	supervised by	(lower limbs	5 27+0 76·	al injuries: and
		(I), Dy		living: No	n, pathology	ovorcico	and lumbar	3.27 ± 0.70 ,	a injuites, and
		illnoss or		iving, NO	limitation in	exercise profossionals and	anu iumbai	6 90+11 92	indispositions
				overcise	the	lasted 70 minutes	spine	to	None
		suigery		exercise	norformance	(warmun E min	assesseu		influenced
		witii bocnitali		program m	of program	(warnup-5 min);	norformance	(Table 2 p	adhoronco
		nospitall		IdSL D	or program	A1-30 (111(1; 51-20		(Table 2 p.	aunerence
		zation		months;	activities	min;		218)	results.

		 (2); patholog y with limit in perform ance of program activities (1) 		non- smokers in the last 6 months; dietary pattern stable ≥ 6 months.		agility/balance exercise-10 min, and flexibility exercise-5 min)				
Stoa EM, et al., 2017 ⁵²	Non- randomize d; two training groups occurred at two different times (5 months separated the two training groups)	N=43 sedentar y, overwei ght individu als with T2DM; Data only included for 38 of the 43 people that initially were included in the study	MIT group: 59±10 years; HAIT group: 59±11	Individuals diagnosed with T2DM, aged 20-70 years and no contraindic ations for tecting or	Medical contraindicat ions to physical testing and exercise according to the ACSM guidelines, sickness for 2 consecutive weeks or more in the last month before testing, illness during the last week before physical testing, diseases or injuries	HAIT Group: 4x4 min at an intensity between 85-95% HR _{peak} . All exercise sessions were supervised and carried out outside (walking/ running). All occurred 3x/week. Groups were matched for total work. All subjects used HR monitors to ensure training intensity.	MIT Group: continuously moderate work at 70-75% HR _{peak} . All exercise sessions were supervised and carried out outside (walking/ running). All occurred 3x/week. Groups were matched for total work. All subjects used HR monitors to ensure training intensity.	Fitness was assessed with anthropomet ric measuremen ts, lactate threshold, work economy, and VO ₂ max. FatOx test was also completed. Blood pressure was also	Body fat decreased significantly in both groups. Waist and hip circumferen ces decreased significantly in both groups. VO ₂ max decreased in the HAIT group only. VO ₂ FatOx changed in both groups but HAIT had a larger change	3 subjects dropped out due to illness of pain
			59±11 years	testing or training.	lasting more than 1 week			also assessed.	when compared	of pain. (Figure 1)

					during the 12-week intervention period, change in diet habits, and <75% of training sessions completed during the intervention. HbA1c data was excluded if the participants had to change their medication during the intervention period.				to the MIT group. HAIT value increased while MIT value decreased. Lactic threshold improved in both groups from before to after intervention . Systolic BP significantly decreased; Diastolic BP in both groups decreased significantly with intervention	
Winding	A parallel	29 aprolled	CONTR		treated with	HIIT Group:	END Group:	Abcoluto	In the	
al	prospectiv	initially	7 vears		insulin: were	session (HIIT) 3		VO2neak and	group	
2018 ⁴⁶	e design	(n=8	FND:		smokers: had	d/wk. Fach	intervention	Relative	fitness	
2010	e design	CONTRO	58+8		unstable	training session	consisting of	VO2peak:	values	
		L: n=10	vears:		weight	was initiated with	either 40	Peak	remained	
		END:	HIIT: 54		(change >5	a brief 5-minute	minutes/sessio	workload	the same	
		n=11	±6		kg/6	standardized	n 3d/wk. Each	(watt): BP:	pre- and	None
		HIIT);	years	T2DM	months); had	warm-up (40% of	training session	HR	post-	reported

final	illness that	Wpeak), after	was initiated	assessment:	
study	contraindicat	which the HIIT	with a brief 5-	Absolute	
populati	ed physical	group performed	minute	VO2peak	
on after	training: or	20 minutes of	standardized	(2.3±0.5 and	
dropout	demonstrate	cycling consisting	warm-up (40%	2.3±0.4).	
and	d evidence of	of periods of 1	of Wpeak),	Relative	
including	renal, liver or	minute at 95%	after which the	VO2peak	
reallocat	cardiovascula	Wpeak and 1	END group	(27.2±9.1 and	
ion	r disease	minute of active	performed 40	26.3± 6.8),	
consiste		recovery (20%	, minutes of	Peak	
d of 26		Wpeak); Including	cycling at 50%	workload	
participa		the warm-up, the	of Wpeak;	(158±29 and	
nts		total duration of	Including the	155± 33),	
(CON,		the exercise	warm-up, the	Systolic BP	
n = 7;		protocol was 75	total duration	(139±7 and	
END, n =		minutes per week	of the exercise	143± 9) ,	
12; HIIT,			protocol was	Dystolic BP	
n = 13)			135 minutes	(87±7 and	
			per week	85±5), and	
				Resting HR	
				(73±14 and	
				69±8). In the	
				Endurance	
				group,	
				fitness	
				values	
				improved	
				except for	
				BP for pre-	
				and post-	
				assessment:	
				Absolute	
				VO2peak	
				(2.3±0.6 and	

				2 5+0 7)	
				2.3 ± 0.7	
				NOlmonk	
				vozреак (от онг г	
				(27.8±5.5	
				and30.3±7.5	
), Реак	
				workload	
				(164±46 and	
				190±58),	
				Systolic BP	
				(134±17 and	
				133±22),	
				Dystolic BP	
				(82±7 and	
				79±9), and	
				Resting HR	
				(67±12 and	
				61±9). In the	
				HIIT group,	
				fitness	
				values	
				improved	
				except for	
				BP for pre-	
				and post-	
				assessment:	
				Absolute	
				VO2peak	
				(2.4±0.5 and	
				2.8±0.5),	
				Relative	
				VO2peak	
				(28.8±4	
				and34.2±6.3	

), Peak workload (178±44 and 203±49), Systolic BP (140±14 and 139±16), Dystolic BP (85±5 and 84±5), and Resting HR (69±12 and 62±9).	
Durutur k N and Özköslü MA, 2019 ⁴⁸	Double- blind RCT	TR group: n=23 (11 female); Control group: 21 (7 female); Abstract reports that 25 in each group.	TR group: 52.82 ± 11.86; Control group: 53.04 ± 10.45	Ages between 18–65 years and diagnose of type 2 DM at least 6 months	Participants who is clinically unstable or who have neuromuscul ar disease, unstable cardiovascula r diseases, musculoskele tal disease, pregnancy, lactation, and inability or unwillingness to comply with the	TR Group: performed breathing and callisthenic exercises, three times a week, for 6 weeks, at home by internet-based video conferences	Control Group: received education session and continued current medications.	6min walk testing, physical fitness and muscle strength dynamomete r measuremen t	Sit-up, sit- and-reach test, back scratch, lateral flexion and time up go tests were significantly improved in the TR group. No significant change in the control group over the study period. Significant differences	None reported.

		required		between	
		exercise.		groups for	
				the sit-up,	
				back	
				scratch,	
				lateral	
				flexion, and	
				time up go	
				tests.	
				6MWD in TR	
				significantly	
				increased	
				after	
				training but	
				the control	
				group	
				diminished.	
				This	
				significantly	
				differed	
				between	
				groups. Also	
				muscle	
				strength	
				significantly	
				improved in	
				the TR	
				group and	
				significantly	
				improved	
				over the	
				control	
				group.	

Szilagyi	RCT	Allocate	Interven		Participation	Intervention	Control Group:	Physical		
B, et al.,		d: Sports	tion		in another	Group: Table II	No	fitness was		
2019 ⁴⁴		interven	group:		exercise	12 week sports	participation in	assessed with		
		tion	mean		program in	therapy program	any recreation	a battery of	Muscle	
		group=1	age =		last 12 weeks	led by a PT	exercise or	five tests:	mass; right	
		22;	61.83		or currently;	(3x/week with PT	sports therapy	two	and left arm	
		Control=	(48-71		not having	and 1/week at	or modified	measured	curl; chair	
		123;	years);		regular visits	home); 12 week	physical	standing	stand;	
		Analyzed	Control		to diabetes	recreation sports	activity	muscle	6MWT all	
		: Sports	group:		clinic; not	program without		stamina	improved	
		interven	mean =		following	the help of a PT		(biceps,	significantly	
		tion	60.1		MD's	from the		femoral, and	in the	
		group	(45-75		prescribed	previously learned		gluteal	intervention	Not
		=103;	years)		diet;	exercise program		muscles),	group.	complications
		Control=			diagnosis of	(4x/week)		two tests	Retention	per se, but
		105			diabetes			flexibility (1.	rate in	"patients who
					form that is			lumbar spine	therapy was	did not
					not type 2;			and	also >80%;	exercise but
					glucose			ischiocrural	(93% in the	have only
					concentratio			muscles, 2.	first 12	followed a
					n			infra- and	weeks and	diet and
					>16.6mmol/L			supraspinatu	84% in the	medication
					or			S,	2nd 12	treatment
					>13.3mm/L			subscapularis	weeks;	regimen
				Interventio	with ketones			, latissimus	Control	physical
				n group:	in urine;			dorsi,	group had	activity and
				mean age =	HR>100bpm;			pectoralis	95%	physical
				61.83 (48-	untreated			major and	attendance	fitness level
				71 years);	HTN (>180			triceps	rate for the	have
				Control	mmHg			muscles), and	first 12	significantly
				group:	systolic, >105			one	weeks and	declined
				mean =	mmHg			cardiorespira	85% for the	within a 6-
				60.1 (45-75	diastolic;			tory stamine	second 12	month study
				years)	drop in			with 6 MWT.	weeks);	period."

systolic >20	Reliabilitly
mmHg not	was 0.87-
herause of	
model	Crophach
ineus),	
untreated	coefficient.
nign-risk	
proliferative	
retinopathy,	
retinopathy	
with	
significant	
inner eye	
bleeding;	
untreated	
chronic renal	
insufficiency;	
severe	
autonomic	
neuropathy;	
unstable	
angina	
pectoris,	
severe	
resting,	
untreated	
EKG changes:	
thrombophle	
bitis or	
intractable	
thrombi.	
active or	
suspected	
myocarditis	
acuto or	
acute of	

untreated
h sert feilure
neart failure,
significant or
severe aortic
stenosis,
clinically
significant
obstructive
hypertrophic
cardiomyopa
thy,
suspected or
known
aneurysm,
clinically
significant
atrial or
ventricular
arrhythmias,
3rd degree
heart block.
untreated
metabolic
disease
(thyrotoxicos
is or
myxedema,
acute
infection or
high fever,
and chronic
infectious
diseases)

MacDon	RCT	Control	Control			U-TURN Group:	Control:		Change in	
ald CS,		(standar	(standar			In addition to	All received		physical	
et al.,		d	d	Diagnosis		standard care (see	standard care		fitness	
2020 ⁴⁷		care)=31	care)=5	of T2DM		control), they	(medical		across	
		; Lower	6.8±8.3;	within last		were also given a	counseling,		groups:	
		tertile =	Lower	10 years;		high-volume	lifestyle advice,		Change in	
		21;	tertile =	18 years		exercise	and T2DM		relative	
		Interme	52.3±8.	old; BMI of		intervention with	education),		VO2max	
		diate	5;	25 or		at least 240	pre-specified		(mL	
		tertile=2	Interme	greater but		minutes of	algorithms for		O2/kg/min):	
		0; upper	diate	less than		aerobic and	glucose-		Control: -0.2	
		tertile =	tertile=	40 kg/m2.		resistance	lowering meds		(-3.5 to 3.2);	
		20	53.7±10	No severe		exercise each	was followed		Lower	
		people.	.1;	comorbid		week in phase 1	based on		tertile: 2.6	
			upper	conditions,		(first 4 months),	glycemic		(0.0 to 5.1);	
			tertile =	insulin use,		and >300 minutes	control;		Intermediat	
			53.8±8.	or HbA1C		of aerobic and			e tertile: 7.9	
			9 years.	>9%. Also		resistance			(5.4 to	
				had to		exercise per week			10.5); Upper	
				attend the		in phases 2 and 3			tertile: 9.6	
				12-month		(last 8 months)			(7.3 to	
				follow-up		with concomitant			11.9);	
				assessment		dietary			Significant	
				with		counseling.			changes in	
				registered					the upper	
				exercise on	Not meeting			VO2max and	tertiles	
				the Polar	inclusion			relative	Table 2 p.	None
				watch.	criteria.			VO2max	495.	reported.
Doming	RCT	90	Mean	Men and	T1DM;	WBV Group:	Placebo	Blood	Systolic BP	
uez-		people	age not	women	reason that	Intervention per	Group: similar	pressure;	significantly	
Munoz		randomi	reporte	with T2DM	exercise is	Table 1, p. 3 of 11	to WBV group	Chair-stand	improved in	
FJ, et		zed>	d.	diagnosed	contraindicat		except no	test (LE	both groups	
al.,		45 into		between	ed; be under		vibration	strength);	but were	None
2020 ⁴³		the WBV		40-85 years	psychotropic			TUG	not	reported.

		group	old:	or neurotoxic		actually		different	
		and 45	completed	treatment:		delivered.		between	
		into the	Informed	exposure to				groups: TUG	
		PG: All	consent	neurotoxins				and Chair-	
		were	conserve.	receive				stand	
		analyzed		radiation				significantly	
		anaryzea		therapy: high				improved	
		•		risk of non-				within both	
				diabetic				groups but	
				neuropathy:				not	
				have or had a				hetween	
				iob with high				groups	
				exposure to				8.0460	
				mechanical					
				whole-body					
				vibrations:					
				have					
				performed					
				whole-body					
				vibration					
				exercises					
				prior to this					
				intervention.					
Wibowo	Systematic	10	Population		Yoga	Control:	CRF (Forced		
RA, et	review and	studies	students		Intervention:	Inactive	vital capacity;	Low quality	
al.,	Meta-	were	with adults		Various types of	control or	6MWT),	evidence	
2022 ⁴⁹	analysis	included	with		yoga including	active controls	muscle	that yoga	
		;	T2DM;		Hatha yoga and	with walking or	strength	benefits	
			Interventio		integrated yoga;	balance	(Chair stand),	muscle	
			n and		sessions varied in	activity. (Table	body	strength	
			compariso	Failing to	length (30 min to	1)	composition,	and CRF	
			n studies	meeting	90 min) and		and balance	compared	
			comparing	inclusion	frequency per		were	to inactive	None
			yoga to	criteria.			assessed.	control.	reported.
	another	week across							
--	--------------	--------------------							
	exercise	studies. (Table 1)							
	interventio								
	n or								
	control;								
	inclusion of								
	at least								
	one health-								
	related								
	fitness								
	measure;								
	RCT or								
	study with								
	control								
	group								
	(quasi-								
	experiment								
	al)								

Appendix E: Intake Checklist to Prevent Initial Ulceration and Re-ulceration

Category to Assess	Date	Findings	Action Needed
	Assessed		
History of a previous ulcer			
Skin Assessment (i.e., ulcer,			
bulla, callous, fissure,			
ingrown toenail, xerosis)			
Range of Motion:			
Metatarsophalangeal			
Joints			
Ankle			
Presence of deformity?			
Sensation Testing:			
Monofilament			
testing			
Vibration testing		128 Hz tuning fork:	
_		R: Intact Diminished	
		Absent	
		L: Intact Diminished	
		Absent	
		Biothesiometer:	
		R:V	
		L:V	
Presence of pedal pulses:			
Dorsal pedis pulse		R: Yes No	
		L: Yes No	
 Posterior tibialis 		R: Yes No	
pulse		L: Yes No	
Diabetes Management:			
Diabetes Knowledge			
Glycemic Control		A1C Score:	
Appropriate Footwear?		Yes No	
Readiness to Change Stage		Pre-contemplation	
		Contemplation	
		Preparation	
		Action	
		Maintenance	

Appendix F: Additional Resources

Support for Implementation for Electronic Medical Records:

Smart phrases:

Question #5: Exercise prescripts for adults with a DFU

Assessment:

• The patient will benefit from ______ exercise to improve cardiovascular health as measured by increasing activity tolerance by _____ minutes.

• Plan to add ______ exercise to improve muscular fitness as demonstrated by improved (transfer speed, balance).

Question #6 & #7

Assessment:

In addition to the prescribed interventions for the primary problem list, patient also will benefit from ______ exercise to increase physical activity as measured by ______ increase in daily step count.

In addition to the prescribed interventions for the primary problem list, patient also will benefit from ______ exercise to increase physical activity and gait speed as measured by ______ increased distance in 6-Minute Walk Test.

In addition to the prescribed interventions for the primary problem list, patient also will benefit from _______ exercise to increase flexibility and balance as measured by ______ increase in Chair Sit and Reach Test.

In addition to the prescribed interventions for the primary problem list, patient also will benefit from ______ exercise to improve lower extremity strength for increase dynamic balance as measured by ______ increase 30-second sit to stand test.

Question #8

Plan:

• Once patient's wound has re-epithelialized, will continue current offloading to monitor for signs of trauma.

• As patient has remained re-epithelialized x2 weeks, will reduce offloading by _____ layer(s) for 2 more weeks.

• Patient has remained closed x4 weeks and therefore will reduced offloading to ______layer of padding.

• Patient has remained closed x6 weeks and ready to transition to new DM shoes next week with appropriate wear schedule.

• Patient is now in new DM shoes with following wear schedule:

Wear shoes twice daily – each time for only 1 hour.

• Check feet after one hour. After 20-30 min and check if any redness and if goes away. If redness does not go away wear cast shoe until follow up with therapist.

Stay off feet.

•

• If there are no signs of tissue injury, increase shoe wearing time one hour at a time for each time.

• Given cut out in cast shoe to wear at other times not in shoe. If needed add cast padding to foot. See later in week (2x per week again). After 3 visits decrease frequency to weekly. Continue to see weekly x 1 month then every 2 weeks.

Appendix G: Journal Club Template:

*Consider reviewing the CPG using the AGREE II tool in preparation of a review of the CPG.

- *Presentation and Discussion of CPG
 - I. Introduction/Background for CPG
 - o Purpose
 - Specific Questions Posed
 - II. Methods: Literature Review Process
 - Process for CPG
 - Discussion of general rules/strategies
 - Quality of Literature/Literature Biases
 - Critical Appraisal of Literature
 - III. Results: What are the Recommendations?
 - Discussion of literature review findings
 - Specifically discuss all of the recommendations.
 - Importance
 - How Implement
 - Challenges to Implementation
 - Discussion of Tables
 - IV. Critiques
 - V. Summary of Implications for Practice